

Segundo Semestre

Cálculo diferencial

U1 Números reales y funciones

Índice

Presentación de la unidad	3
Propósitos	3
Competencia específica	3
Axiomas de los números reales	5
El campo de los números complejos	6
Axiomas de orden y completes	11
Valor absoluto e intervalos	15
Funciones	21
Dominio y contradominio	21
Gráfica de una función	24
Operaciones entre funciones	35
Cierre de la unidad	39

Presentación de la unidad

Se pretende que, en esta unidad, se revisen las propiedades de los números reales desde una vista intuitiva, estas a su vez son útiles al momento de operar con diferentes números. Estas propiedades establecen reglas que deberás aplicar durante todo el desarrollo del curso.

Revisarás los axiomas de la suma, producto o multiplicación, de distribución que involucra a la suma, multiplicación y división. También veremos los axiomas de orden y completes, donde a todo conjunto de números reales le corresponde un antecesor y sucesor.

El valor absoluto de un número real y los intervalos que puede tomar en un conjunto de número y su representación gráfica del valor absoluto de un número real. Para terminar, revisarás el concepto de función, su dominio y contra dominio, su representación gráfica tomando valores que lleguen al límite y sus diferentes operaciones.

Propósitos

- Identificar los axiomas de estructura algebraica de los números reales
- Resolver problemas utilizando los axiomas de orden
- Identificar los conceptos de valor absoluto y los intervalos
- Determinar el dominio, el contradominio (o codominio), y la imagen de una función
- Operar con función es y determinar su gráfica

Competencia específica

Utilizar las propiedades de los números reales para analizar funciones reales de variable real, por medio de sus componentes y su representación gráfica

Foro de dudas

En este espacio de diálogo podrás resolver cada inquietud que se te presente a lo largo de la asignatura, para ello **realiza** lo siguiente:

- 1. Observa las líneas de discusión que generará tu figura académica.
- 2. **Selecciona** e **ingresa** a la línea de discusión en donde se trate tu inquietud.
- 3. **Lee** esa línea de discusión, puede haber la posibilidad de que alguien más tenga la misma inquietud a la tuya, sino es así.
- 4. Planeta tu pregunta lo más claro posible.
- 5. **Espera** la respuesta de tu figura académica o compañeros(as).

Avisos importantes

En este espacio de consulta, tu figura académica podrá plasmarte lo siguiente:

- Fechas de entrega de las actividades determinadas y de las complementarias.
- Características generales de entrega de las actividades.
- Criterios de evaluación de las actividades.
- Materiales extra o complementarios para tu aprendizaje.
- Formas de trabajo, etc.

^{*}Recuerda que puedes apoyar a tus compañeros(as) en resolver sus inquietudes, siempre y cuando cuentes con la respuesta correcta fundamentada en fuentes confiables.

^{*}Es importante mencionarte que este espacio estará cambiando constantemente, por lo cual requiere tu atención a lo largo del curso.

Actividades

Conforme vayas avanzando en el estudio de esta unidad, puedes ir realizando las actividades correspondientes a esta unidad. La descripción de las mismas puedes encontrarla en el espacio *Planificación de actividades de la figura académica*, ahí te marcarán:

- Instrucciones específicas de lo que deberás realizar.
- Características de los entregables.
- Criterios de evaluación que se tomarán en cuenta.

Axiomas de los números reales

En esta unidad se presenta al conjunto de los números reales \mathbb{R} desde un punto de vista axiomático, iniciando con su estructura algebraica, su relación de orden y la condición de completes. Además, se estudian los distintos tipos de intervalos que existen, para finalizar con el estudio del concepto de función y de su representación gráfica.

El campo de los números complejos

El primer contacto que tiene un estudiante con los números es por medio de los números **naturales** $\mathbb{N} = \{1, 2, 3...\}$, en este conjunto existe la operación de suma, ésta a su vez induce a la operación de resta, el problema resulta al observar que no siempre se puede realizar esta operación. Este desafortunado hecho motiva la existencia de los números **enteros** $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, en este conjunto se pueden sumar, restar y multiplicar; de manera similar a la suma, la multiplicación induce la operación de división, al igual que para la resta en $\mathbb N$, la división no siempre se pude llevar a cabo en $\mathbb Z$, lo que motiva la existencia de los **números racionales** $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$, en este conjunto se

pueden realizar las operaciones básicas de la aritmética: sumar, restar, multiplicar y dividir. Lo anterior presenta la existencia de la siguiente cadena de contención de sistemas numéricos $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O}$.

El conjunto de los números reales \mathbb{R} , se construye a partir de los números racionales, en consecuencia $\mathbb{Q} \subset \mathbb{R}$ y ambos conjuntos poseen una estructura algebraica similar. Un conjunto que permite realizar las cuatro operaciones fundamentales de la aritmética toma el nombre de **campo**, por tal motivo se comienza enunciando las propiedades del campo de \mathbb{R} .

Axiomas de la suma: Para la operación de suma o adición se tiene que para cada par de elementos $x, y \in \mathbb{R}$ se le asigna un elemento único x + y llamado la **suma de** x **con** y que satisface las siguientes condiciones:

- **Asociatividad**: x+(y+z)=(x+y)+z para cualesquiera $x,y,z\in\mathbb{R}$. (i).
- **Conmutatividad**: x + y = y + x para cualesquiera $x, y \in \mathbb{R}$. (ii).
- **Elemento neutro:** Existe $0 \in \mathbb{R}$ tal que x+0=x para cualquier $x \in \mathbb{R}$. (iii).
- **Elemento inverso:** Dado $x \in \mathbb{R}$ existe $-x \in \mathbb{R}$ tal que x + (-x) = 0. (iv).

La propiedad (i) permite operar más de dos elementos y además permite eliminar los paréntesis de la suma, es decir x + (y + z) = (x + y) + z = x + y + z. Como consecuencia inmediata de los axiomas de la suma anterior se tiene el siguiente resultado:

Lema 1.1.1. Los elementos 0 y -x son únicos.

Demostración: Se procede por contradicción, supóngase que existe otro elemento neutro para la suma 0', entonces x + 0' = x para cualquier $x \in \mathbb{R}$, en particular cuando x = 0 se tiene que 0 + 0' = 0, pero por definición de 0 se tiene que 0 + 0' = 0' en consecuencia

Cálculo diferencial

Números reales y funciones

0 = 0'. Por otra parte, supóngase que x tiene otro elemento inverso x' para la suma, es decir x + x' = 0, en consecuencia se tienen las siguientes igualdades:

$$x' = x' + 0 = x' + (x + (-x)) = (x' + x) + (-x) = 0 + (-x) = -x$$

Por lo tanto -x = x'.

Otra propiedad importante es la que se conoce como **ley de cancelación**, la cual se enuncia del siguiente modo:

Proposición 1.1.2. Dados $x, y, z \mathbb{R}$ tales que x+y=x+z entonces y=z. **Demostración**: Este resultado se obtiene de aplicar los axiomas de la suma de la siguiente manera:

$$x+y=x+z$$

 $(-x)+[x+y]=(-x)+[x+z]$ Unicidad de la suma
 $[(-x)+x]+y=[(-x)+x]+z$ Asociatividad
 $0+y=0+z$ Inverso aditivo
 $y=z$ Elemento neutro

Por lo tanto x+y=x+z implica que y=z.

Ш

La propiedad anterior permite definir la operación de **resta** a partir de la propiedad (iv) por medio de la siguiente relación: dados $x, y \in \mathbb{R}$ el elemento x **menos** y se define por x - y = x + (-y).

Axiomas de la multiplicación: Para la operación de **multiplicación** o **producto** se tiene que para cada pareja de elemento x, $y \in \mathbb{R}$ se le asigna un elemento único $x \times y$ llamado **el producto de** x **con** y que satisface las siguientes condiciones:

- (v). **Asociatividad**: $x \times (y \times z) = (x \times y) \times z$ para cualesquiera $x, y, z \in \mathbb{R}$.
- (vi). **Conmutatividad**: $x \times y = y \times x$ para cualesquiera $x, y \in \mathbb{R}$.
- (vii). **Elemento neutro**: Existe \mathbb{R} con $1 \neq 0$, tal que $x \times 1 = x$ para cualquier $x \in \mathbb{R}$
- (viii). **Elemento inverso:** Dado $x \in \mathbb{R}$, con $x \neq 0$, existe $x^{-1} \in \mathbb{R}$ tal que $x \times x^{-1} = 1$.

El producto también se denota por $x \cdot y$ ó xy. Al igual que la suma, la propiedad (v) permite multiplicar más de tres elementos y también se puede eliminar el paréntesis, es decir $x \cdot (y \cdot z) = (x \cdot y) \cdot z = x \cdot y \cdot z$. Como consecuencia inmediata de los axiomas del producto se tiene el siguiente resultado.

 $x \cdot z$

Cálculo diferencial

Números reales y funciones

Lema 1.1.3. Los elementos 1 y x^{-1} son únicos.

Demostración: Se procede por contradicción, supóngase que existe otro elemento neutro 1', entonces $x \times 1' = x$ para cualquier $x \in \mathbb{R}$, en particular cuando x = 1 se tiene que $1 \times 1' = 1$, pero por definición de 1 se tiene que $1 \times 1' = 1'$ en consecuencia 1 = 1'. Por otra parte, supóngase que x tiene otro elemento inverso x' para la multiplicación, es decir $x \times x' = 1$, en consecuencia se tienen las siguientes igualdades:

$$x' = x' \times 1 = x' \times (x \times x^{-1}) = (x' \times x) \times x^{-1} = 1 \times x^{-1} = x^{-1}$$

Por lo tanto $x^{-1} = x'$.

En producto también existe la propiedad de cancelación la cual es indispensable para la definición de división de números reales:

Proposición 1.1.4. Dados $x,y,z\in \mathbb{R}$, con $x\neq 0$, tales que $x\cdot y=$ entonces y=z.

Demostración: Este resultado se obtiene de aplicar los axiomas de la suma de la siguiente manera:

$$x \cdot y = x \cdot z$$

 $x^{-1} \cdot [x \cdot y] = x^{-1} \cdot [x \cdot y]$ Unicidad del producto
 $z \cdot [x^{-1} \cdot x] \cdot y = [x^{-1} \cdot x] \cdot y = [x^{-1} \cdot y] \cdot z \cdot y = 1 \cdot z$ Elemento recíproco

y = z Elemento neutro

Por lo tanto, x.y = x.z implica que y = z

.

Axioma de distribución: Las operaciones de suma y multiplicación quedan relacionadas a través de la propiedad distributiva:

(ix). Para cualquier par $x, y \in \mathbb{R}$ se cumple $x \cdot (y + z) = x \cdot y + x \cdot z$.

Hay que observar que las propiedades de conmutativas de la suma y el producto respectivamente garantizan que $(x + y) \times z = (x \times z) + (y \times z)$.

Estos nueve axiomas son los que determinan la estructura aritmética de los números reales, las propiedades siguientes se obtienen de aplicar los axiomas anteriores.

Lema 1.1.5. Para todo $x \in \mathbb{R}$ se tiene que $0 \cdot x = 0$.

Demostración: Dado $x \in \mathbb{R}$ se tiene las siguientes relaciones:

Cálculo diferencial Números reales y funciones

 $= 0 = 0 \cdot x$

$$0 \cdot x = (0 + 0) \cdot x$$
 Elemento neutro $0 \cdot x = (0 \cdot x) + (0 \cdot x)$ Propiedad distributiva $0 \cdot x = (0 \cdot x) + (0 \cdot x)$ ley de cancelación

Por lo tanto $0 \cdot x = x$ para cualquier $x \in \mathbb{R}$.

Corolario: El elemento 0^{-1} no existe.

Demostración: Se procede por contradicción, supóngase que 0^{-1} existe, entonces $0=0\times 0^{-1}=1$, lo cual es una contradicción ya que $0\neq 1$. Esto implica que la hipótesis de la existencia de 0^{-1} es insostenible. Por lo tanto 0^{-1} no existe.

Е

La operación de **división** se define a partir de la propiedad (viii) a través de la siguiente relación: dados $x,y\in\mathbb{R}$, con $y\neq 0$, el elemento x **entre** y se define por $x \div y = x \times y^{-1}$. En algunas ocasiones la división $x \div y$ también se denota por x / y ó $x \overset{}{_}$.

Otro resultado importante es el siguiente:

Lema 1.1.6. Dados $x, y \in \mathbb{R}$ se tiene lo siguiente:

(a)
$$-(-x) = x$$
.

(b)
$$x(-y) = (-x) y = -xy$$
.

(c)
$$(-x)(-y) = xy$$
.

Demostración: Para (a) hay que observar que (-x) + [-(-x)] = 0 además (-x) + x = 0 por consiguiente (-x) + [-(-x)] = (-x) + x, por la ley de cancelación -(-x) = x. Para (b) hay que observar las siguientes relaciones:

$$y + (-y) = 0$$
 Inverso aditivo $x \cdot [y + (-y)] =$ Unicidad del producto $x \cdot 0 xy + x(-y) =$ Propiedad distributiva

0

y

Además, xy + (-xy) = 0, en consecuencia, se tiene que xy + x(-y) = xy + (-xy), por la ley de cancelación x(-y) = -xy, el resultado (-x) y = -xy es similar. Finalmente, para (c) se obtiene de lo siguiente:

$$y + (-y) = 0$$

Inverso aditivo

$$(-x) \cdot [y + (-y)] =$$
 Unicidad del producto
 $(-x) \cdot 0$ Propiedad distributiva
 $(-x) \cdot y + (-x)(-y) = 0$

Cálculo diferencial

Números reales y funciones

Además (-x) y = -xy por consiguiente -xy + (-x)(-y) = 0, es decir, -(-xy) = (-x)(-y) de donde se sigue (-x)(-y) = xy.

Para finalizar esta sección se definen las potencias y las raíces de un número real. Dado $x \in \mathbb{R} \setminus \{0\}$ y $n \in \mathbb{N} \cup \{0\}$ la potencia o exponente n de x se define de forma recursiva por la siguiente relación:

$$x^{n} = \begin{bmatrix} 1, & \sin n = 0 \\ x \cdot x^{n-1} & \sin n \neq 0 \end{bmatrix}$$

La forma explícita de la relación anterior es $x^n = \underbrace{x \times \cdots \times x}_{n \text{ veces}}$, es decir, n cuentas las veces

que se multiplica x por sí mismo. Cuando x = 0, se tiene que 0^n es igual a 0, para $n \neq 0$; el caso 0^0 no está definido.

Como consecuencia de la definición anterior se tiene el siguiente resultado:

Lema 1.1.8. Para cuales quiera $m,n \in \mathbb{N} \cup \{0\}$ y $x \in \mathbb{R} \setminus \{0\}$ se cumple:

- (a) $x^m \cdot x^n = x^{m+n}$.
- (b) $(x^m)^n = x^{nm}$.

Demostración: Lo anterior se muestra contando adecuadamente los exponentes de x, para (a) se tiene que:

Por otro lado, para (b) se tiene

Lo que muestra el resultado.

La parte (a) justifica el uso de la notación x^{-1} para el inverso multiplicativo. Utilizando esto y la propiedad (b) se extiende el concepto de potencial a un exponente negativo bajo las relaciones $\left(x^{-1}\right)^n = \left(x^n\right)^{-1} = \frac{1}{x^n}$.

Cálculo diferencial

Números reales y funciones

Como proceso inverso de una potencia se define la raíz de un número real. Dados $x, y \mathbb{R}$ y \mathbb{N} se dice que x **es raíz** n **-ésima de** y y se denota por $\sqrt[n]{x} = y$ sí y solo sí $x^n = y$.

La propiedad (b) presenta la relación existente entre las potencias y la multiplicación, dado que la potencia es lo inverso de las raíces, entonces las raíces se relacionan con la

división por medio de la siguiente igualdad $\sqrt[n]{x} = x^n$. Por último, cabe mencionar que a pesar de que la definición de la raíz n -ésima de un número real es de naturaleza algebraica su existencia no se puede garantizar solamente con las propiedades antes mencionadas.

Axiomas de orden y completes

En el conjunto de los números naturales hay una relación de orden, dado un número natural distinto de cero, este tiene un antecesor y un sucesor, esta idea se hereda al conjunto de los números enteros y este orden a su vez es heredado al conjunto de los números racionales. En el caso de los números reales, el concepto de orden se obtiene por medio de la siguiente definición, esta engloba el orden en los sistemas numéricos antes mencionados.

Axiomas de orden: Existe un subconjunto ${\bf P}$ de ${\mathbb R}$ que satisface las siguientes condiciones:

(i). Dado $x \in \mathbb{R}$ se tiene una y solo una de las siguientes condiciones: $x \in \mathbf{P}$ ó x = 0 ó $-x \in \mathbf{P}$.

(ii). Dados $x, y \in \mathbf{P}$ se tiene que $x + y, xy \in \mathbf{P}$.

El axioma (i) indica que el conjunto \mathbb{R} es la unión disjunta de tres conjuntos $\mathbb{R} = \mathbf{P} \cup \{0\} \cup \mathbf{P'}$ donde $\mathbf{P'}$ es el conjunto de los inversos aditivos de \mathbf{P} , esta propiedad se conoce como la **tricotomía**. La propiedad (ii) dice que \mathbf{P} es **cerrado** bajo suma y productos. Los elementos del conjunto \mathbf{P} son llamados **positivos**, lo que se denotará como x > 0 y los elementos de $\mathbf{P'}$ son llamados **negativos**, los cuales se denotan por x < 0.

Los axiomas de orden permiten comparar números reales del siguiente modo: para cada par $x,y\in\mathbb{R}$ se dice que x es mayor que y ó que y es menor que x si y sólo si $x-y\in \mathbf{P}$ o equivalentemente x-y>0, lo anterior se denota por x>y ó y< x respectivamente. Como consecuencia la ley de tricotomía se enuncia de la siguiente forma: para cada par $x,y\in\mathbb{R}$ se tiene una y sólo una de las siguientes condiciones:

x > y ó x = y ó x < y.

Cálculo diferencial

Números reales y funciones

El Lema 1.1.6. Afirma que el producto de un positivo con un negativo y viceversa es negativo y el producto de dos números negativos es positivo, lo anterior se le conoce como la regla de los signos. Aplicando esto hay que observar que $1 = 1 \times 1 = (-1) \times (-1)$ lo que implica que 1 > 0.

El siguiente paso es presentar cómo interactúa la estructura algebraica de $\mathbb R$ con la estructura de orden de $\mathbb R$, lo cual se presenta en el siguiente resultado:

Lema 1.1.9. Para cuales quiera $x, y, z \in \mathbb{R}$ se tiene lo siguiente:

- (a) Si x < y y y < z entonces x < z.
- (b) Si x < y y z > 0 entonces xz < zy.
- (c) Si x < y entonces $x \pm z < y \pm z$.
- (d) Si x < yy x, y > 0 entonces $\frac{1}{x} < \frac{1}{y}$.

y x

Demostración: Para (a) se tiene que como x < y y y < z implican que y - x, $z - y \in \mathbf{P}$. Además, \mathbf{P} es cerrado bajo la suma se tiene que $(y - x) + (z - y) \in \mathbf{P}$, es decir $z - x \in \mathbf{P}$ por consiguiente x < z. Para (b) se tiene que y - x, $z \in \mathbf{P}$, dado que \mathbf{P} es cerrado bajo el producto se tiene que $(y - x)z \in \mathbf{P}$ lo que implica que yz - xz > 0, es decir xz < yz. Para

(c) $y-x\in \mathbf{P}$ lo que implica que $(y+z)-(x+z)\in \mathbf{P}$ y $(y-z)-(x-z)\in \mathbf{P}$, es decir $x\pm z< y\pm z$. Finalmente, hay que observar que cuando x>0 entonces $x^{-1}>0$ ya que si $x^{-1}<0$ entonces $1=x\cdot x^{-1}<0$, lo que es una contradicción; tomando $x,y\in \mathbf{P}$ implica que $x^{-1},y^{-1}\in \mathbf{P}$, por la parte (b) se tiene que

x < y $x^{-1} \cdot x < x^{-1} \cdot y$ $1 < x^{-1} \cdot y$

$$\begin{array}{ccc} & \text{por (ii)} \\ & \text{inverso} & \text{multiplicativo} \\ 1 \cdot y^{-1} < x^{-1} \cdot y \cdot y^{-1} & \text{por (ii)} \\ & y^{-1} < x^{-1} & \text{Asociatividad e inverso multiplicativo} \end{array}$$

Lo que muestra el resultado.

En cuestiones algebraicas y en términos de orden, los números reales y los números racionales no muestran diferencias, la diferencia se presenta en el siguiente axioma.

Axioma de completitud

Antes de enunciar el axioma de completitud se requieren los siguientes conceptos, los cuales se obtienen a partir del orden presentado en \mathbb{R} : Sea S un subconjunto de \mathbb{R} , se

Cálculo diferencial Números reales y funciones

dice que α es una cota inferior de S si y sólo si $\alpha < x$ para todo $x \in S$, de manera similar se dice que β es una cota superior de S si y solo si $x < \beta$ para todo $x \in S$.

A partir de las definiciones anteriores se tiene que para $S \subset \mathbb{R}$ el **supremo** de S, denotado por $\sup(S)$, es la cota superior más pequeña, es decir, para cualquier cota superior β de S se tiene que $\sup(S) \leq \beta$. De manera análoga, para $S \subset \mathbb{R}$ el **ínfimo** de S, denotado por $\inf(S)$, es la cota inferior más grande, es decir, para cualquier cota inferior α de S se tiene que $\alpha \leq \inf(S)$. Cuando se tiene que $\sup(S) \in S$ el supremo de S toma el nombre de **máximo** de S, de forma similar cuando $\inf(S) \in S$ el ínfimo de S toma el nombre de **mínimo** de S.

Ejemplo: El conjunto de los números naturales no es acotado.

Ejemplo: El conjunto de los números positivos es acotado inferiormente por cualquier número negativo y su ínfimo es cero.

Una de las grandes diferencias entre los números reales y los números naturales es la existencia del supremo y del ínfimo para un subconjunto dado acotado. Esto se resuelve por medio del siguiente axioma.

Axioma de completitud: Todo subconjunto no vacío de números reales que es acotado superiormente tiene supremo. Equivalentemente, todo subconjunto no vacío de números reales que es acotado inferiormente tiene ínfimo.

Teorema 1.1.10. El conjunto $\mathbb N$ no es acotado, es decir, para todo $x \mathbb R$ existe $\mathbb N$, donde n depende de x, tal que x < n.

Demostración: Se procede por contradicción, supóngase que no se cumple la condición, esto quiere decir que existe $x_0 \in \mathbb{R}$ tal que $n \le x_0$ para todo $n \in \mathbb{N}$, por consiguiente \mathbb{N} es un conjunto acotado superiormente, por el axioma de completés existe $\beta = \sup(\mathbb{N})$. Observando que $\beta - 1 < \beta$ entonces $\beta - 1$ no es cota superior de \mathbb{N} ya que β es la más pequeña de las cotas superiores, entonces existe $m \in \mathbb{N}$ tal que $\beta - 1 < m$, equivalentemente, $\beta < m + 1$ es decir β no es cota superior de \mathbb{N} ya que $m + 1 \in \mathbb{N}$, lo que es una contradicción. En consecuencia la hipótesis de la existencia de $\beta = \sup(\mathbb{N})$ es insostenible, por lo tanto se sigue el resultado.

Cálculo diferencial

Números reales y funciones

Como una aplicación del axioma de completés y el teorema anterior se presenta el siguiente resultado, el cual recibe el nombre de **propiedad arquimediana**, y en esencia dice que dado un número siempre se puede construir un número más grande.

Corolario: Dados $x, y \in \mathbb{R}$, con x > 0, entonces existe $n \in \mathbb{N}$ tal que y < nx.

Demostración: Tomando $\underline{y} \in \mathbb{R}$ existe $n \in \mathbb{N}$ tal que $\underline{y} < n$ por consiguiente y < nx.

La axioma de completes se utiliza para mostrar propiedades como la densidad de los números reales, la existencia de las raíces de números reales positivos, entre otras cosas, sin embargo las técnicas empleadas para tales demostraciones son parte de un curso de análisis matemático y se escapan de los objetivos de este curso.

La regla de los signos dice que el producto de números reales del mismo signo es positivo y el producto de números reales con signos distintos es negativo, esto implica que la potencia de un positivo siempre es positivo y que la potencia de un negativo es positivo cuando la potencia es par y que es negativo si la potencia es impar.

La última observación impone una condición muy importante para la extracción de raíces: **no existen en el conjunto de los números reales las raíces pares de un número negativo**, por ejemplo $\sqrt{-4}$ y $\sqrt[6]{-8}$ no tienen sentido en $\mathbb R$. Además, en caso de existir, las raíces pares siempre son dos, una positiva y otra negativa, por convención, sólo se toma el valor positivo, por ejemplo $\sqrt{9}$ tiene dos valores 3 y -3 ya que $(3)^2 = 9$ y $(-3)^2 = 9$, por el convenio se tiene que $\sqrt{9} = 3$.

Para finalizar esta sección se introduce el concepto de infinito, el cual se define de la siguiente forma: Existe un elemento $\infty \notin \mathbb{R}$ tal que:

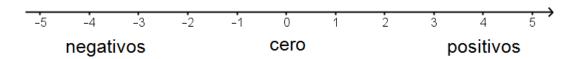
- (i). $-\infty < x < \infty$ para todo $x \in \mathbb{R}$
- (ii). $x + \infty = \infty \text{ y } x \infty = -\infty.$
- (iii). $x \div \infty = 0 \quad \forall \quad x \div (-\infty) = 0$.
- (iv). Si x > 0 entonces $x \cdot \infty = \infty$ $x \cdot (-\infty) = -\infty$.
- (v). Si x < 0 entonces $x \cdot \infty = -\infty$ y $x \cdot (-\infty) = \infty$.

La propiedad (i) sirve para ver al conjunto \mathbb{R} como un conjunto acotado inferior y superiormente. La propiedad (ii) muestra cómo interactúa ∞ con la suma y la resta, las propiedades (iv) y (v) muestran la interacción de ∞ con el producto. Finalmente, la propiedad (iii) se justificará con el concepto de límite.

Gracias a la existencia de los axiomas de orden y completés, el conjunto de los números reales tiene una representación gráfica como una recta horizontal, donde se ubica al cero

Números reales y funciones

en el centro de la misma, la recta se divide en segmentos de la misma longitud representando 1 cada segmento. Por convención, del lado derecho se ubican los números positivos y en el lado izquierdo están los números negativos, además dados dos números sobre la recta es más grande el que esté más a la derecha.



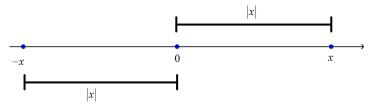
Valor absoluto e intervalos

El valor absoluto de un número real es uno de los conceptos de suma importancia en el desarrollo del cálculo, el cual se define de la siguiente manera: Para cualquier $x \mathbb{R}$, el valor absoluto de x se denota y se define por:

$$\begin{array}{c|c} | & \text{si } x \ge 0 \\ \text{si } x < 0 \end{array}$$

Por ejemplo, $3 \models 3$ y $+5 \neq 5$. De manera equivalente, por la convención para las raíces pares de un número positivo, el valor absoluto es $|x| = \sqrt{x^2}$. Como consecuencia inmediata de la definición anterior se tiene que $x \le |x|$ para cualquier $x \in \mathbb{R}$ Como una **advertencia importante**, por la manera en cómo se define el valor absoluto de un número real, cuándo se trabaja con este concepto siempre hay que trabajar en casos: el primero cuando se tienen valores positivos y el segundo cuando se tienen valores negativos.

En forma gráfica, el valor absoluto de un número real es la distancia que hay de este número al cero.



La primera propiedad que se presenta es la relación que existe entre el valor absoluto y la suma de números reales, dicha relación toma el nombre de la **desigualdad del triángulo**.

Lema: Para cualquier par $x, y \in \mathbb{R}$ se tiene que $x + y \nleq x + y$.

Demostración: Se procede por casos.

U1 |

Cálculo diferencial

Números reales y funciones

- Caso I: cuando $x \ge 0$ y $y \ge 0$, entonces $x \ne x$ y $y \ne y$, luego se tiene que |x + y| = x + y = |x| + |y|.
- Caso II: cuando $x \ge 0$ y y < 0, entonces |x| = x y $y \ne -y$, como no se sabe si x + y es positivo o es negativo. Se procede por subcasos, cuando $x + y \ge 0$, entonces |x + y| = x + y < x y; cuando x + y < 0 se tiene que |x + y| = -(x + y) = -x y < x y, en ambos caso se tiene que $|x + y| < x y = x + (-y) \ne x \ne y$.
- Caso III: cuando x < 0 y $y \ge 0$ se obtiene de manera similar al Caso II.
- Caso IV: cuando x < 0 y y < 0, entonces $x \neq -x$ y $y \neq -y$, luego se tiene que |x + y| = -(x + y) = -x y = |x + y|.

Por lo tanto, se tiene que $x + y \not = x + y$ para cuales quiera $x, y \in \mathbb{R}$. \square

Ahora se presenta la compatibilidad que hay entre el producto de dos números reales y el valor absoluto de los mismos.

Teorema: Para cualquier par $x, y \in \mathbb{R}$ se tiene que $|x \cdot y| = |x| \cdot |y|$. **Demostración:** Se procede por casos.

- Caso I: cuando $x \ge 0$ y $y \ge 0$, entonces $x \ne x$ y $y \ne y$, luego se tiene que $|x \cdot y| = x \cdot y \ne x$ y
- Caso II: cuando $x \ge 0$ y y < 0, entonces $x \models x$ y $y \not = -y$, además xy < 0; de lo cual se implica que $|xy| = -xy = x(-y) \models x \mid y$.
- Caso III: cuando x < 0 y $y \ge 0$ se obtiene de manera similar al Caso II.
- Caso IV: cuando x < 0 y y < 0, entonces |x| = -x y |y| = -y, además xy > 0, luego se tiene que $|x \cdot y| = x \cdot y = (-x)(-y) = |x \cdot y|$.

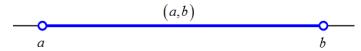
Por lo tanto, se tiene que $|x \cdot y| = |x| |y|$ para cuales $x, y \in \mathbb{R}$. \square quiera

En muchas ocasiones, cuando se desea presentar un conjunto de números reales que cumplan algunas condiciones, se presentan como segmentos de recta que toman el nombre de intervalos, los cuales se definen de la siguiente manera: Dados $a,b \in \mathbb{R}$, con a < b, se tiene que:

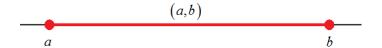
(i). El **intervalo abierto de** a **a** b es el conjunto $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$. De forma gráfica el intervalo abierto (a,b) se presenta en la siguiente figura:

Cálculo diferencial

Números reales y funciones

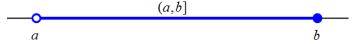


(ii). El **intervalo cerrado de** a a b es el conjunto $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$. De forma gráfica el intervalo abierto [a,b] se presenta en la siguiente figura:

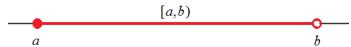


La diferencia entre un intervalo abierto y un intervalo cerrado es que el intervalo cerrado contiene a sus extremos y el abierto no. De las definiciones anteriores se pueden definir otro tipo de intervalos como combinación de abierto y cerrado, a dichos intervalos se les conoce como **semiabiertos** o **semicerrados**, los cuales se definen del siguiente modo:

(iii). El **intervalo abierto en** a **y cerrado en** b es el conjunto $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$. De forma gráfica el intervalo abierto (a,b] se presenta en la siguiente figura:



(iv). El **intervalo cerrado de** a **y abierto en** b es el conjunto $[a,b) = \{x \in \mathbb{R} | a \le x \le b\}$. De forma gráfica el intervalo abierto [a,b) se presenta en la siguiente figura:



Las cuatro definiciones anteriores se pueden aplicar cuando alguno o ambos extremos son infinitos, de los cuales se definen los siguientes conjuntos:

$$(\vee). \qquad (-\infty,a) = \left\{ x \in \mathbb{R} \, | \, x < a \right\}.$$

(vi).
$$(-\infty,a] = \{x \in \mathbb{R} \mid x \le a\}.$$

(vii).
$$(b,\infty) = \left\{ x \in \mathbb{R} \mid b < x \right\}.$$

(viii).
$$[b,\infty) = \{x \in \mathbb{R} \mid b \le x\}.$$

(ix).
$$(-\infty,\infty)=\mathbb{R}$$
.

Ahora se presenta el siguiente resultado:

Lema: Dado $a \in \mathbb{R}$ con a > 0, entonces $x \nmid a$ si y sólo si -a < x < a, en otras palabras, el intervalo (-a, a) satisface la condición |x| < a.

Cálculo diferencial

Números reales y funciones

Demostración: Supóngase que $x \nmid a$, entonces se tiene que cuando $x \geq 0$, se tiene que x = |x| < a y cuando x < 0 se tiene que -x = |x| < a es decir -a < x, por consiguiente -a < x < a. Por otro lado, supóngase que -a < x < a, entonces cuando $x \geq 0$ se tiene que |x| = x < a y cuando x < 0 se tiene que -a < |x| = -x lo que impliça que x < a, por consiguiente $x \nmid a$.

De manera gráfica la condición $x \nmid a$ se presenta del siguiente modo:

Ejercicio: Resolver la siguiente desigualdad 3x + 2 < 14.

Solución: Sólo basta seguir las propiedades de orden del siguiente modo:

3x + 2 < 14

$$3x + 2 - 2 < 14 - 2$$

$$3x \ge 12$$

Gráficamente se tiene lo siguiente:

Es decir, el conjunto que satisface la desigualdad es el intervalo $(-\infty, 4)$.

Ejercicio: Resolver la desigualdad 2x - 5 | < 17.

Solución: De las propiedades del orden y del valor absoluto se tiene lo siguiente:

$$-17 < 2x - 5 < 17$$

$$-17 + 5 < 2x - 5 + 5 < 17 + 5$$

$$-12 < 2x < 22$$

$$-\frac{12}{6} < 2x < 22$$

$$\begin{array}{ccc}
2 & \overline{2} & \overline{2} \\
-6 < x < 11
\end{array}$$

Gráficamente se tiene lo siguiente:

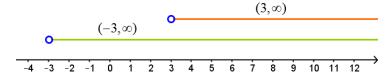
Por lo tanto la solución es el intervalo (-6,11). \square

Números reales y funciones

Ejercicio: Resolver la desigualdad $x^2 > 9$.

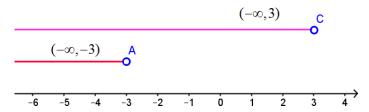
Solución: Se tiene que la relación $x^2 > 9$ es equivalente a $x^2 - 9 > 0$, es decir (x-3)(x+3) > 0. Recordando la regla para que el producto de dos cantidades sea positivo es porque ambas son positivas o ambas son negativas, por consiguiente se tienen los siguientes casos:

• Caso 1: Cuando x-3>0 y x+3>0. Luego x>3 y x>-3, por lo que la solución a este caso es la intersección de los conjuntos $(3,\infty)$ y $(-3,\infty)$. Gráficamente se tiene lo siguiente:



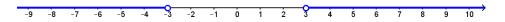
En consecuencia se tiene que el conjunto buscado es $(3, \infty)$.

• Caso 2: Cuando x-3<0 y x+3<0. Luego x<3 y x<-3, por lo que la solución a este caso es la intersección de los conjuntos $(-\infty,3)$ y $(-\infty,-3)$. Gráficamente se tiene lo siguiente:



En consecuencia se tiene que el conjunto buscado es $(-\infty, -3)$.

Por consiguiente la solución es la unión de cada uno de los conjuntos obtenidos en cada caso. Gráficamente se tiene lo siguiente:



Por lo tanto, la solución buscada es $(-\infty, -3) \cup (3, \infty)$.

Ejercicio: Resolver la desigualdad $x^2 + 4x - 5 < 0$.

Solución: Como en el ejemplo anterior, hay que factorizar el polinomio $x^2 + 4x - 5$, en caso de no verse claro cómo factorizar se recomienda hacer lo siguiente:

Cálculo diferencial

Números reales y funciones

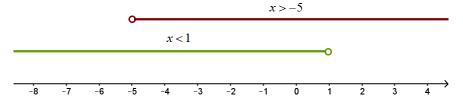
$$x^{2}+4x-5=(x^{2}+4x)-5=(x^{2}+4x+4)-5-4=(x+2)^{2}-9$$

La técnica anterior se le conoce comúnmente como "completar el cuadrado", luego se tiene lo siguiente:

$$(x+2)^2 - 9 = [(x+2)-3][(x+2)+3] = (x-1)(x+5)$$

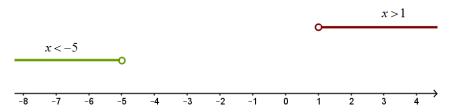
En consecuencia (x-1)(x+5) < 0. Por la ley de los signos para que el producto de dos números reales sea un número negativo éstos tienen que diferir de signo, por lo cual tenemos los siguientes casos:

• Caso 1: Cuando x-1<0 y x+5>0, es decir x<1 y x>-5, gráficamente se tiene lo siguiente:



Por consiguiente la solución a este caso es el intervalo (-5,1).

• Caso 2: Cuando x-1>0 y x+5<0, es decir x>1 y x<-5, gráficamente se tiene lo siguiente:



Por consiguiente, no intersectan estos intervalos y así la solución es el conjunto vacío \varnothing .

Por lo tanto la solución buscada es $(-5,1)\cup\varnothing=(-5,1)$.

Ejercicio: Resolver la desigualdad $x^2 + 2x + 5 \le 0$.

Solución: Se procede completando el cuadrado en el polinomio $x^2 + 2x + 5$ lo que permite obtener las siguientes relaciones:

$$x^{2} + 2x + 5 = (x^{2} + 2x) + 5 = (x^{2} + 2x + 1) + 5 - 1 = (x + 1)^{2} + 4$$

Hay que observar que para cada $x \in \mathbb{R}$ se tiene que $(x+1)^2 \ge 0$ y además 4 > 0 lo que implica que $(x+1)^2 + 4 > 0$ entonces $x^2 + 2x + 5 > 0$, por consiguiente no existe $x \in \mathbb{R}$ tal que $x^2 + 2x + 5 \le 0$. Por lo tanto el conjunto solución es \varnothing .

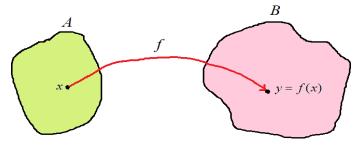
Funciones

El concepto de función es uno de los más importantes que se presentan en matemáticas, gran parte de la atención de los resultados que se presentan en matemáticas son sobre alguna propiedad que cumplen un conjunto determinado de funciones.

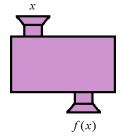
Dominio y contradominio

En general, una **función** se define como una terna de objetos (f, A, B) donde A y B son dos conjunto no vacíos y f es una regla de correspondencia de tal manera que para cada $x \in A$ se le asocia uno y solo un elemento $y \in B$.

El conjunto A toma el nombre de **dominio** de la función, el conjunto B es el **contradominio**, en muchas ocasiones se denota por y = f(x) al elemento asignado a $x \in A$ por medio de la regla f, este toma el nombre de **imagen de** x bajo f. Hay que resaltar que **todos** los elementos del dominio tienen que estar asignados y que **no todo** elemento del contradominio tiene por qué ser asignado, por lo que nace el concepto de **imagen de una función**, que es el conjunto de todos elementos en el contradominio que son asignados bajo la función y se denota por f(A), luego se tiene que $f(A) \subset B$.



En general una función con dominio A, contradominio B y regla de correspondencia se denota por $f:A\to B$ dónde $x\mapsto f(x)$. Haciendo un abuso de lenguaje, muchas funciones se denotan solo por su regla de correspondencia f(x) dejando implícito que x pertenece al conjunto donde esté definido f(x), como si f fuera una máquina para procesar y x son solo lo objetos que esa máquina puede procesar.



Números reales y funciones

Todo lo anterior permite decir que dos funciones son iguales sí y solo sí coinciden en su dominio, contradominio y regla de correspondencia.

Ejemplo: Considera el conjunto de estudiantes dentro de un salón y el conjunto de bancas que hay en dicho salón, y la regla de correspondencia es que a cada estudiante se le asigna la banca donde está sentado.

Ejemplo: Dado un conjunto $A \neq \emptyset$ se define la función identidad Id $A: A \rightarrow A$ con regla de correspondencia $\operatorname{Id}_A(x) = x$ para todo $x \in A$.

En el ejemplo anterior, se supone de manera implícita que no hay estudiantes de pie, con un estudiante que este de píe, la asignación anterior ya no es una función porque hay un elemento que no tiene asignación. Por otra parte, el hecho de que todos los estudiantes estén sentados no quiere decir que no existan bancas vacías.

Sin considerar características en el dominio y el contradominio, las funciones toman los siguientes nombres: Dada una función $f:A \rightarrow B$ se dice que

- Es inyectiva si y solo si elementos distintos tienen imágenes distintas, es decir, (i). para $x, y \in A$ implica que $f(x) \neq f(y)$, equivalentemente, cuando f(x) = f(y)implica que x = y.
- Es **sobreyectiva** si y solo si f(A) = B, es decir, dado $y \in B$ existe $x \in A$ tal que (ii). f(x) = y.

En cálculo, se estudian funciones donde su dominio y su contradominio son subconjunto de números reales.

Ejemplo: Sea $f: \{0, -2, 0.5, \sqrt{2}, \pi, -5\} \rightarrow \mathbb{R}$ donde f(x) = 3x, entonces se tiene lo siguiente:

• f(0) = 3(0) = 0• f(0.5) = 3(0.5) = 1.5• $f(\pi) = 3(\pi) = 3\pi$ • f(-2) = 3(-2) = -6• $f(\sqrt{2}) = 3(\sqrt{2}) = 3\sqrt{2}$ • f(-2) = 3(-2) = -6f f(-2) = 3(-2) = -6La imagen de es el conjunto $\{0, 1.5, 3\pi, -6, 3, 2, -\}$.

•
$$f(0) = 3(0) = 0$$

•
$$f(0.5) = 3(0.5) = 1.5$$

•
$$f(\pi) = 3(\pi) = 3\pi$$

• $f(-2) = 3(-2) = -6$

•
$$f(-2) = 3(-2) = -6$$

•
$$f(\sqrt{2}) = 3(\sqrt{2}) = 32\sqrt{2}$$

$$\bullet f \begin{pmatrix} -2 \\ -5 \end{pmatrix} = 3 \begin{pmatrix} -2 \\ -5 \end{pmatrix} = -6$$

Cuando se presente solo la regla de correspondencia f(x), se entiende que el dominio y su imagen, los cuales se denotarán por dom(f) y img(f), son implícitos, es decir, todos aquellos valores con los que la regla de correspondencia *f* permite trabajar.

Ejemplo: La función f(x) = 2x tiene dominio en todo \mathbb{R} ya que cualquier número puede multiplicarse por 2 y su contradominio es \mathbb{R} ya que cualquier número es igual 2 por su mitad.

Ejemplo: La función $f(x) = \frac{1}{-}$ tiene dominio $\mathbb{R} \setminus \{0\}$ ya que el único impedimento para

dividir es que el denominador sea cero, el contradominio es $\mathbb{R}\setminus\{0\}$ ya que el cero no tiene inverso multiplicativo.

1

Cálculo diferencial

Números reales y funciones

Ш

Ejemplo: Para cualquier $n \in \mathbb{N}$ se define la función $f(x) = x^n$ la cual tiene dominio en \mathbb{R} ya que nada me impide calcular la potencia de un número real, el contradominio como se verá en la Unidad 3 depende de n, cuando la n es par el contradominio es $[0, \infty)$ y cuando n es impar el contradominio es \mathbb{R} .

Ш

Ejemplo: Para cualquier $n \in \mathbb{N} \setminus \{0,1\}$ y $x \in \mathbb{R}$ se define la función $f(x) = \sqrt[2n]{x}$, el dominio es el conjunto $[0,\infty)$ ya que no existen las raíces pares de números negativos y su contradominio es $[0,\infty)$.

Ejercicio: Hallar el dominio de la función $f(x) = \frac{1}{x^2 - 9}$.

Solución: Hay que observar que la regla f(x) es un cociente y para que él es bien definido, el denominador tiene que ser distinto, en consecuencia hay que excluir los valores donde el denominador es idénticamente a cero, los cuales en este ejercicio son más fáciles de calcular, en efecto $x^2-9=0$ es equivalente a (x-3)(x+3)=0, es decir, se tiene que x=3 ó x=-3. Por lo tanto se tiene que $dom(f)=\mathbb{R}\setminus\{-3,3\}$.

Ejercicio: Hallar el dominio de la función $f(x) = \sqrt{x^2 - 3x + 2}$.

Solución: Hay que observar que la regla f(x) es una raíz cuadrada y para que ésta esté bien definida el radicando siempre tiene que ser positivo o cero, en consecuencia $x^2-3x+2\geq 0$, la desigualdad anterior es equivalente a $(x-1)(x-2)\geq 0$, como se vio en la sección anterior se resuelve por casos: cuando $x-1\geq 0$ y $x-2\geq 0$, es decir, $x\geq 1$ y $x\geq 2$ así el conjunto buscado es $[2,\infty)$; cuando $x-1\leq 0$ y $x-2\leq 0$, es decir, $x\leq 1$ y $x\leq 2$ así el conjunto buscado es $(-\infty,1]$. Por lo tanto $\mathrm{dom}(f)=(-\infty,1]\cup[2,\infty)$.

Hasta este momento solo se han presentado funciones con una sola regla de correspondencia, ahora toca el turno de presentar una **función definida por secciones**: el dominio de esta función es la unión disjunta de conjuntos y en cada conjunto hay una regla de correspondencia, estas funciones se presentan en la siguiente forma: si $x \in I_1$

$$\begin{cases}
f_1(x) \\
f(x)
\end{cases}$$

$$f(x) = \begin{cases}
f(x) \\
f(x)
\end{cases}$$

 $si x \in I$

Números reales y funciones

Donde $I_1,...,I_n,...$ son conjuntos tales que $I_i \cap I_j = \emptyset$ para $i \neq j$.

Ejemplo: Para cada número real x se le puede asignar su valor absoluto |x|, esta función puede verse como una función por secciones en la siguiente forma:

$$\begin{array}{c|c} | & \operatorname{si} x \ge 0 \\ & \operatorname{si} x < 0 \end{array}$$

Ejemplo: En la función por secciones definida por

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Se conoce como la función signo.

Gráfica de una función

Para comenzar esta sección se comienza con la definición de producto cartesiano de dos conjuntos: Dados dos conjuntos A, $B \neq \emptyset$, el producto cartesiano de A con B es el conjunto $A \times B = \{(x,y) \mid x \in A \text{ y } y \in B\}$. El símbolo se conoce (x,y) como pareja ordena ya que queda claro que los elementos de A siempre van en la primera entrada de la pareja y los elementos de B en la segunda.

Aquí hay un abuso de notación ya que se está utilizado el símbolo (x, y) en otro contexto distinto al presentado en la sección anterior. En algunos casos el símbolo (x, y) representa un intervalo abierto y en otros casos un elemento de algún producto cartesiano de conjuntos, por lo que se recomienda no ver el símbolo como un objeto aislado, si no, que hay que observar bajo qué condiciones se está introduciendo tal notación.

Ejemplo: Dado $A = \{1, 2, 3\}$ y $B = \{a, e, i, o, u\}$ el producto cartesiano de A con B es el conjunto:

$$A \times B = \begin{cases} (2, a) & (1, e) & (2, i) & (2, o) & (2, u) \\ (3, a) & (1, e) & (3, i) & (3, o) & (3, u) \end{cases}$$

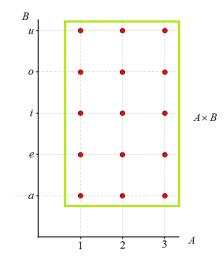
El producto cartesiano se representa gráficamente como un rectángulo, donde el primer conjunto se ubica horizontalmente y el segundo conjunto de forma vertical.

24

Cálculo diferencial

Números reales y funciones

Ejemplo: Dado $A = \{1,2,3\}$ y $B = \{a,e,i,o,u\}$ el producto cartesiano $A \times B$ se representan por la siguiente figura:



Para una función $f: A \rightarrow B$, su **gráfica** se define como el conjunto:

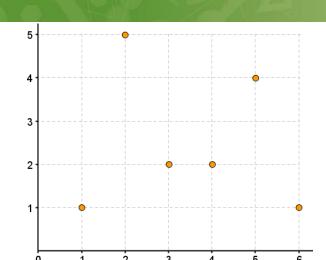
$$gra(f) : \{(x, f(x)) | x \in A\}.$$

Se tiene que $\operatorname{gra}(f) \subset A \times B$, sin embargo no todo subconjunto de $A \times B$ es la gráfica de una función. Para que un subconjunto D de $A \times B$ sea la gráfica de una función, primero todos los elementos de A tienen que estar como primeras entradas de los elementos de D y segundo cuando $(x,y),(x,z) \in D$, definición de función implica que y=z. Esto permite definir una función como un conjunto de parejas que satisfacen la condición anterior, al representarse de manera gráfica, una recta vertical no debe de contener más de un elemento de la gráfica de una función.

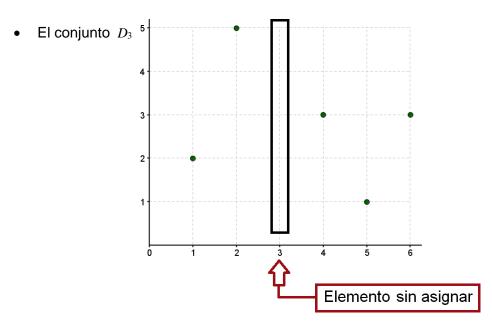
Ejemplo: Sea
$$A = \{1,2,3,4,5,6\}$$
 y $B = \{1,2,3,4,5\}$. Considere los siguientes conjuntos: $D_1 = \{(1,1),(2,5),(3,2),(4,2),(5,4),(6,1)\}$ $D_2 = \{(1,2),(2,5),(4,3),(5,1),(6,2)\}$ $D_3 = \{(1,1),(2,5),(3,2),(3,3),(4,2),(5,4),(4,5),(6,1)\}$

De los cuales se tiene lo siguiente:

• El conjunto D_1 es la gráfica de una función, ya que todos los valores de A forman parte de las primeras componentes de D_1 y no hay dos parejas que tengan la misma primeras entradas. De manera gráfica se ve que no hay línea vertical que contengan dos puntos.

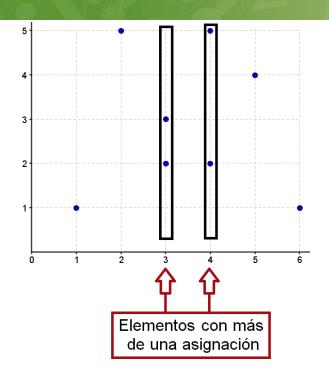


• El conjunto D_2 no es la gráfica de una función, ya que el elemento $3 \in A$ forman no es la primera componente de los elementos de D_2 . De manera gráfica se ve que la línea vertical que pasa por 3 no contiene puntos.

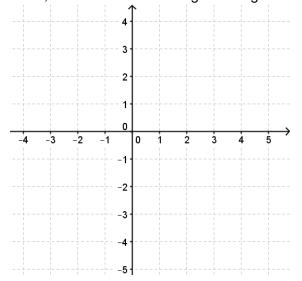


no es la gráfica de una función, ya que hay parejas que tienen una misma primera entrada pero las segundas son distintas. De manera gráfica se ve que la líneas verticales que pasan por 3 y 4 respectivamente tienen dos puntos cada una. Elementos con más de una asignación

U1 Cálculo diferencial Números reales y funciones



Ahora toca el turno de presentar la gráfica de funciones con dominio y contradominio en el conjunto de los números reales. Por definición, la gráfica de esta función es un subconjunto del producto cartesiano $\mathbb{R} \times \mathbb{R}$. La representación gráfica de $\mathbb{R} \times \mathbb{R}$ son dos rectas perpendiculares, la recta horizontal tiene sentido de izquierda a derecha y la recta vertical de abajo hacia arriba, como lo muestra la siguiente figura:



Como el dominio de la función es un subconjunto de los números reales, es casi imposible localizar todos los puntos que corresponde la gráfica de una función. Una manera de resolver esto es dar un subconjunto representativo del dominio, los cuales son evaluados bajo a regla de correspondencia para formar las parejas que forman parte de la gráfica y

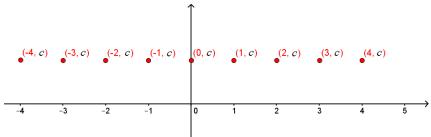
Números reales y funciones

esto presenta un comportamiento de la función, cabe mencionar que esto puede ser engañoso. En la Unidad 4 se presenta una técnica para graficar algunas funciones a partir de las propiedades de las mismas.

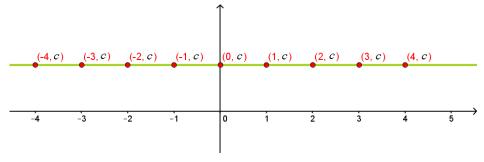
Ejemplo: Para $c \in \mathbb{R}$ se define la función f(x) = c para cada, esta función toma el nombre de **función constante**, tomando $D = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ se tiene la siguiente tabulación:

х	f(x)	(x, f(x))
-4	c	(-4, c)
-3	c	(-3, c)
-2	c	(-2, c)
-1	c	(-1, c)
0	c	(0, c)
1	c	(1, c)
2	c	(2, <i>c</i>)
3	c	(3, <i>c</i>)
4	c	(4, <i>c</i>)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos, lo natural es pensar que la gráfica de la función es la siguiente:

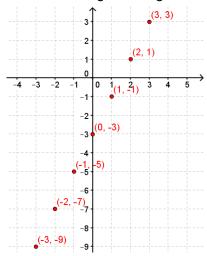


Ejemplo: Sea $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = 2x - 3, tomando el conjunto $D = \{-3, -2, -1, 0, 1, 2, 3\}$ se tiene la siguiente tabla

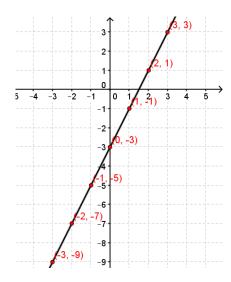
Números reales y funciones

х	f(x) = 2x - 3	(x, f(x))
-3	2(-3) - 3 = (-6) - 3 = -9	(-3, -9)
-2	2(-2) - 3 = (-4) - 3 = -7	(-2, -7)
-1	2(-1) - 3 = (-2) - 3 = -5	(-1, -5)
0	2(0) - 3 = (0) - 3 = -3	(0, -3)
1	2(1) - 3 = (2) - 3 = -1	(1, -1)
2	2(2) - 3 = (4) - 3 = 1	(2,1)
3	2(3) - 3 = (6) - 3 = 3	(3,3)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos, lo natural es pensar que la gráfica de la función es la siguiente:



Números reales y funciones

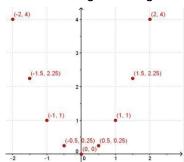
Ejemplo: Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$ tomando el conjunto

$$D = \{-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2\}$$

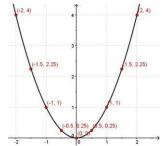
Se tiene la siguiente tabla:

х	$f(x) = x^2$	(x, f(x))
-2	$(-2)^2 = 4$	(-2, 4)
-1.5	$(-1.5)^2 = 2.25$	(-1.5, 2.25)
-1	$(-1)^2 = 1$	(-1,1)
-0.5	$(-0.5)^2 = 0.25$	(-0.5, 0.25)
0	$(0)^2 = 0$	(0, 0)
0.5	$(0.5)^2 = 0.25$	(0.5, 0.25)
1	$(1)^2 = 1$	(1,1)
1.5	$(1.5)^2 = 2.25$	(1.5, 2.25)
2	$(2)^2 = 4$	(2, 4)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos, lo natural es pensar que la gráfica de la función es la siguiente:



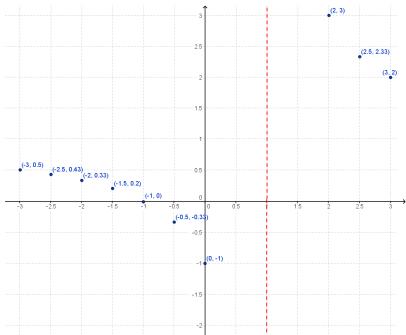
Ahora se presenta la gráfica de una función por secciones, aquí se sugiere que el conjunto representativo este formado por elementos representativos de cada conjunto que divide el dominio de la función.

Números reales y funciones

Ejemplo: La función $f(x) = \frac{x+1}{2}$ está definida para todo $x \in \mathbb{R} \setminus \{1\}$. Tomando el conjunto x-1 $D = \{-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1.5, 2, 2.5, 3\}$ Se tiene la siguiente tabulación:

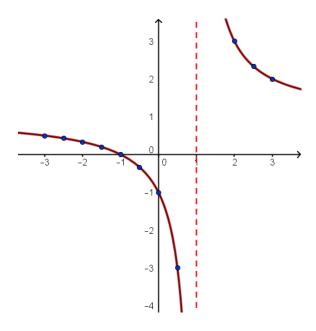
х	f(x)	(x, f(x))
-3	0.5	(-3, 0.5)
-2.5	0.43	(-2.5, 0.43)
-2	0.33	(-2, 0.33)
-1.5	0.2	(-1.5, 0.2)
-1	0	(-1, 0)
0.5	-0.33	(0.5, -0.33)
0	-1	(0, -1)
0.5	-3	(0.5, -0.3)
1.5	5	(1.5,5)
2	3	(2,3)
2.5	2.33	(2.5, 2.33)
3	2	(3, 2)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos, lo natural es pensar que la gráfica de la función es la siguiente:

U1 Cálculo diferencial Números reales y funciones

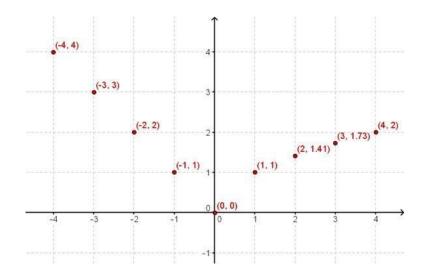


Ejemplo: La función
$$f \colon \mathbb{R} \to \mathbb{R}$$
 definida por
$$f(x) = \begin{cases} |-x| & \text{si } x < 0 \\ \sqrt{x} & \text{si } x \ge 0 \end{cases}$$

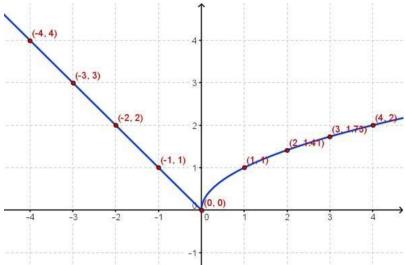
Tomando los conjuntos $D = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. De donde se obtiene la siguiente tabla:

х	f(x)	(x, y)
-4	4	(-4, 4)
-3	3	(-3,3)
-2	4	(-4, 4)
-1	1	(-1,1)
0	0	(0, 0)
1	1	(1,1)
2	2√	(2,√2)
3	3√	(3,\bar{3})
4	2	(4, 2)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos, lo natural es pensar que la gráfica de la función es la siguiente:

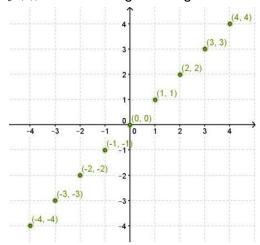


Finalmente se presenta el ejemplo de una función donde la ubicación de un conjunto de punto proporciona una idea engañosa de la gráfica de la función:

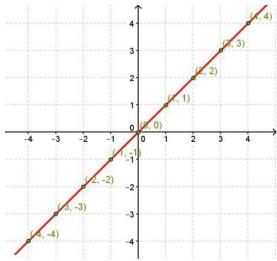
Ejemplo: Dada la función $f(x) = x - \sin(\pi x)$ y el conjunto $D = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ se tiene la siguiente tabulación:

х	f(x)	(x, f(x))
-4	$-4 - \sin(-4\pi) = -4$	(-4, -4)
-3	$-3 - \sin(-3\pi) = -3$	(-3, -3)
-2	$-2 - \sin(-2\pi) = -2$	(-2, -2)
-1	$-1 - \operatorname{sen}(-\pi) = -1$	(-1, -1)
0	$0 - \operatorname{sen}(0) = 0$	(0, 0)
1	$1 - \operatorname{sen}(\pi) = 1$	(1,1)
2	$2 - \operatorname{sen}(2\pi) = 2$	(2, 2)
3	$3 - \operatorname{sen}(3\pi) = 3$	(3,3)
4	$4 - \operatorname{sen}(4\pi) = 4$	(4, 4)

Localizando los puntos (x, f(x)) se tiene la siguiente figura:



Por la ubicación de los puntos se puede cometer la equivocación de pensar que la gráfica de la función $f(x) = x - sen(\pi x)$ es la siguiente:

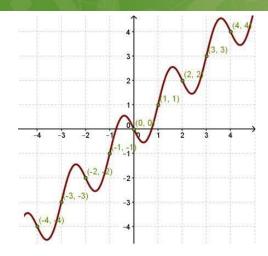


Sin embargo, la gráfica de la función es la siguiente:

g

Cálculo diferencial

Números reales y funciones



Como se mencionó anteriormente, en la Unidad 4 se presenta un método para construir la gráfica anterior.

Operaciones entre funciones

Hasta este momento solo se ha presentado la definición de función y su representación gráfica, ahora toca el turno de definir operaciones entre funciones. La estructura algebraica de los números reales permite definir las primeras cuatro operaciones aritméticas sobre funciones del siguiente modo:

Definición: Dadas dos funciones $f,g:D\subset\mathbb{R}\to\mathbb{R}$ se tienen los siguientes conceptos:

- (i). La suma $f + g : D \subset \mathbb{R} \to \mathbb{N}$ se define por (f + g)(x) = f(x) + g(x).
- (ii). La diferencia $f g : D \subset \mathbb{R} \to \mathbb{N}$ se define por (f g)(x) = f(x) g(x).
- (iii). El producto $f \cdot g : D \subset \mathbb{R} \to \mathbb{N}$ se define por $(f \cdot g)(x) = f(x)g(x)$.
- (iv). El cociente $f: D \subset \mathbb{R} \to \mathbb{N}$ se define por $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, cuando $g(x) \neq 0$.

Hay que observar que la definición requiere que las funciones f y g tengan el mismo dominio, en la práctica esto no siempre se cumple, en tal caso la definición anterior se aplica a la intersección de los dominios de las funciones, cuando la intersección de los dominio es vacío las operaciones de funciones no están definidas.

Ejemplo: Sean f(x) = 3x y $g(x) = 2x^2$, en consecuencia ambas funciones tienen el mismo

dominio que es \mathbb{R} . Aplicando la definición anterior se tiene que:

$$(f+g)(x) = f$$

$$(x) + g(x) = 3x +$$

 $x \cdot ($

f ·

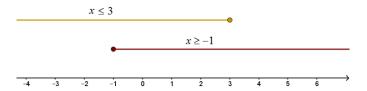
 $f(x) = f(x) \cdot g(x) = (3x)(2x^2) = 6x^3$.

[]1 Cálculo diferencial

Números reales y funciones

•
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{3x}{2x^2} = \frac{3}{2x}$$
, además $x \neq 0$.

Ejemplo: Las funciones $f(x) = \sqrt{3-x}$ y $g(x) = \sqrt{x+1}$ no tienen los mismo dominios, en efecto, la función f(x) = x está definida cuando $3-x \ge 0$, es decir $3 \ge x$; para la función $g(x) = \sqrt{x+1}$ este definida se requiere que $x+1 \ge 0$, es decir $x \ge -1$. Gráficamente se tiene:



El conjunto donde simultáneamente están definidas las funciones f(x) y g(x) es el intervalo cerrado [-1,3]. En este conjunto se tiene que:

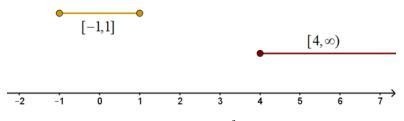
•
$$(f+g)(x) = f(x) + g(x) = \sqrt{3-x} + \sqrt{x+1}$$
.

•
$$(f-g)(x) = f(x) - g(x) = \sqrt{3-x} - \sqrt{x+1}$$
.

•
$$(f \cdot g)(x) = f(x) \cdot g(x) = \sqrt{3 - x} \sqrt{x + y} = \sqrt{3 + 2x - x^2}$$
.

•
$$\left(\frac{f}{g}\right|(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{3-x}}{\sqrt{x+1}} = \sqrt{\frac{3-x}{x+1}}$$
, cuando $x \neq -1$.

Ejemplo: Los dominios de las funciones $f(x) = \sqrt{1-x^2}$ y $g(x) = \sqrt{x-4}$ no se intersectan ya que f(x) solo está definida cuando $1-x^2 \ge 0$, es decir, en el conjunto [-1,1] y la función g(x) solo está definida en el conjunto $[4,\infty)$. Gráficamente se tiene lo siguiente:



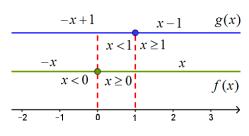
Por consiguiente, las funciones $f+g,f-g,f\cdot g,f$ no están definidas.

Ejemplo: El dominio de las funciones por secciones f(x) = |x| y g(x) = |x| - 1 es \mathbb{R} . Para poder realizar las operaciones aritméticas de estas funciones hay que identificar los conjuntos donde las reglas de correspondencia cambian. Se tiene que:

Números reales y funciones

$$f(x) = \begin{cases} x & \text{si } x \ge 0 \\ & \text{si } x < 0 \end{cases} \quad \text{y} \quad g(x) = \begin{cases} x - 1 & \text{si } x \ge 1 \\ -x + 1 & \text{si } x < 1 \end{cases}$$

La siguiente gráfica es muy útil para observar cómo se secciona el dominio para operar las funciones anteriores:



En consecuencia se tiene lo siguiente:

$$(f+g)(x) = \begin{cases} -2x+1 & \text{si } x < 0 \\ 1 & \text{si } 0 \le x < 1 \end{cases}$$

$$2x-1 & \text{si } 1 \le x$$

$$-1 & \text{si } x < 0$$

•
$$(f-g)(x) = \begin{cases} 2x - 1 & \text{si } 0 \le x < 1 \\ 1 & \text{si } 1 \le x \end{cases}$$

$$(f \cdot g)(x) = \begin{cases} x^2 - x & \text{si } x < 0 \\ -x^2 + x & \text{si } 0 \le x < 1 \end{cases}$$

$$\begin{vmatrix} x^2 - x & \text{si } 1 \le x \\ x^2 - x & \text{si } 1 \le x \end{vmatrix}$$

•
$$(f+g)(x) = \begin{cases} -2x+1 & \text{si } x < 0 \\ 1 & \text{si } 0 \le x < 1 \end{cases}$$
• $(f+g)(x) = \begin{cases} -2x+1 & \text{si } x < 0 \\ 1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f-g)(x) = \begin{cases} 2x-1 & \text{si } 0 \le x < 1 \\ 1 & \text{si } 1 \le x \end{cases}$
• $(f \cdot g)(x) = \begin{cases} x^2-x & \text{si } x < 0 \\ -x^2+x & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} x^2-x & \text{si } x < 0 \\ -x^2+x & \text{si } 1 \le x \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$
• $(f \cdot g)(x) = \begin{cases} -x & \text{si } x < 0 \\ -x+1 & \text{si } 0 \le x < 1 \end{cases}$

(f g)(x)

A partir de la función identidad Id(x) = x y multiplicando sucesivamente n -veces por si misma dicha función se tiene:

$$f(x) = \left(\underbrace{\operatorname{Id} \times \times \operatorname{Id}}_{n-\text{veces}}\right)(x) = \left(\operatorname{Id}(x)\right) \times \times \left(\operatorname{Id}(x)\right) = \underbrace{x \times \times x}_{n-\text{veces}} = \underbrace{x}^{n}.$$

Tomando $a \in \mathbb{R} \setminus \{0\}$ y la función $f(x) = x^n$ se tiene la **función monomial** $f(x) = ax^n$.

Tomando una suma de funciones monomiales se construye una función polinomial, es decir, dados $a_0,...,a_n \in \mathbb{R}$, donde $a_n \neq 0$, la función tiene la forma

$$p(x) = a + ax + ax^2 + ax^n.$$

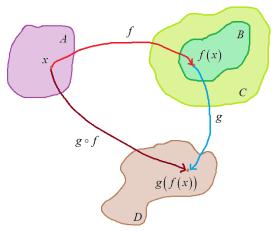
$$0 \quad 1 \quad 2 \quad \cdots \quad n$$

q(x)

Cálculo diferencial Números reales y funciones

El número n toma el nombre de grado del polinomio p(x) . A partir de dos funciones polinomiales p(x) y q(x) se construye una **función racional** tomando $h(x) = \stackrel{p(x)}{\longrightarrow}$ definida cuando $q(x) \neq 0$.

Otra operación entre funciones es la composición, la cual se define de la siguiente manera: Dadas dos funciones $f:A\to B$ y $g:C\to D$ con $B\subset C$, **la composición** f seguida de g es la función $g\circ f$ que tiene dominio A y contradominio D y su regla de correspondencia es $(g\circ f)(x)=g(f(x))$. De manera gráfica, la composición de funciones se ve de la siguiente manera:



Al igual que en el caso de las operaciones aritméticas, la condición $B \subset C$ no siempre se puede garantizar, en tal caso se trabaja con la parte del dominio de f cuya imagen este contenido en C. Además, la operación \circ no es conmutativa, es decir, **la relación** $f \circ g = g \circ f$ **no necesariamente se cumple**.

En cuestiones operativas, la relación g(f(x)) significa que la correspondencia que determina a g(x) se obtiene tomando la asignación $x \mapsto f(x)$, es decir, el valor x se sustituye por f(x). Por ejemplo, si $g(x)=x^2$ la expresión g(3x+1) significa que $x \mapsto 3x+1$ de donde se obtiene que $g(3x+1)=(3x+1)^2=9x^2+3x+1$.

Ejemplo: Para las funciones f(x) = 2x + 1 y $g(x) = 3x^2$ se tienen las siguientes composiciones:

$$g(x) = f(g(x)) = f(3x^2) = 2(3x^2) + 1 = 6x^2 + 1.$$

•
$$(g \circ f)(x) = g(f(x)) = g(2x+1) = 3(2x+1)^2 = 3(4x^2+4x+1) = 12x^2+12x+3$$
.

• (*J*

Cierre de la unidad

En esta unidad se estudiaste los axiomas que determinan la estructura de los números reales. Después aprendiste los conceptos de valor absoluto e los intervalos. Finalmente trabajaste con funciones reales de variable real, estudiando su dominio, contradominio, imagen, su gráfica y las distintas operaciones que hay entre ellas.

Parasabermás

Algunos programas en línea que te permiten graficar funciones reales de variable real están en las siguientes direcciones:

- http://fooplot.com/?lang=es#W3sidHlwZSI6MCwiZXEiOiJ4XjliLCJjb2xvcil6l iMwMDAwMDAifSx7InR5cGUiOjEwMDB9XQ--
- http://www.graphmatica.com/

Fuentes de consulta

- Apostol, T. (1990), Calculus, Vol. 1, (México) Editorial Reverté.
- Lang, S. (1986), A First Course in Calculus, 5th edition, Springer. N. Y. Editorial Board
- Larson, R. (2010), Calculo de una variable, México. Editorial Mc Graw Hill.
- Spivak, M. (2008), Calculus, 4th edition, Publish or Perish
- Stewart, J. B. (2010), Cálculo de una variable: Conceptos y contexto, 4ª edición. México Cengage Learning.
- Zill, D. (2011), Cálculo; Trascendentes tempranas, 4a edición. México.Mc Graw Hill.