

 Universidad Abierta y a Distancia de México 0

U3 Programación

Estructuras de control

Programación

Estructuras de control U3

Programa de la asignatura:

 Universidad Abierta y a Distancia de México 1

U3 Programación

Estructuras de control

Índice

Presentación de la unidad ... 2

Propósitos .. 3

Competencia específica .. 3

3.1. Estructuras selectivas ... 4

3.1.1. Estructura selectiva simple (if) ... 4

3.1.2. Estructura selectiva doble (if-else) .. 9

3.1.3. Estructura selectiva múltiple (switch-case) ... 11

3.2. Estructuras repetitivas .. 15

3.2.1. Estructura Mientras (while) .. 17

3.2.2. Estructura Desde-mientras (for) .. 20

3.2.3. Estructura Hacer-mientras (do-while) .. 23

3.3. Estructuras Anidadas ... 29

3.4. Arreglos .. 31

3.4.1. Definición y tipos de arreglos .. 34

3.4.2. Declaración e inicialización ... 36

3.4.3. Acceso a los elementos de un arreglo .. 39

Actividades .. 40

Autorreflexines ... 40

Cierre de la unidad .. 41

Para saber más ... 41

Fuentes de consulta .. 42

 Universidad Abierta y a Distancia de México 2

U3 Programación

Estructuras de control

Presentación de la unidad

En la primer unidad, mediante el mundo de la ardilla, aprendiste que cualquier algoritmo puede ser

escrito utilizando únicamente tres tipos de instrucciones, conocidas como estructuras de control:

secuenciales (cuando se ejecutan una tras otra), selectivas (cuando se ejecutan dependiendo de una

condición) y repetitivas (que se ejecutan varias veces en función de una condición); su objetivo es

controlar el flujo de ejecución de un programa, es decir, el orden en que se ejecutan las instrucciones.

Considerando que en la unidad anterior diseñaste algoritmos secuenciales y los codificaste en

lenguaje C, para obtener el programa deseado que diera solución al problema en cuestión, podemos

decir que solamente te falta saber cómo funcionan y cómo se codifican en lenguaje C las otras dos

estructuras para poder diseñar algoritmos estructurados. Así que esto es justamente el tema de esta

unidad, aquí estudiarás con más detalle los tipos y funcionamiento de las estructuras selectivas y

repetitivas, introducidas en la unidad 1.

Para su mejor comprensión, esta unidad está dividida en dos partes: en la primera revisarás algunos

problemas donde la solución implica tener que elegir el camino que se debe seguir para llegar al

resultado deseado, los cuales se solucionan utilizando estructuras selectivas, por lo cual se analizarás

a mayor profundidad el significado (semántica) de cada estructura y verás la forma de codificarla

(sintaxis) en lenguaje C. La segunda parte está dedicada a las estructuras repetitivas, para las cuales

se sigue la misma estrategia, verás cómo se pueden solucionar problemas utilizando este tipo de

estructuras y también analizarás su semántica y aprenderás su sintaxis en lenguaje C. De esta

manera, al finalizar la unidad podrás construir programas que incluyan cualquier tipo de estructura de

control, así como poder trabajar con variables tipo arreglo.

 Universidad Abierta y a Distancia de México 3

U3 Programación

Estructuras de control

Propósitos

En esta Unidad:

• Construirás expresiones booleanas para modelar situaciones reales.

• Diseñarás algoritmos para resolver problemas que impliquen la toma de decisiones, utilizando

estructuras selectivas.

• Diseñarás algoritmos para resolver problemas que realicen una misma tarea varias veces usando

estructuras repetitivas.

• Codificarás en lenguaje C algoritmos estructurados.

Competencia específica

Utilizar estructuras de control selectivas y repetitivas para resolver
problemas simples a través del desarrollo de programas en lenguaje C.

 Universidad Abierta y a Distancia de México 4

U3 Programación

Estructuras de control

3.1. Estructuras selectivas

Para diseñar programas capaces de tomar decisiones se requiere de las estructuras de control

selectivas, también llamadas condicionales. Éstas llevan a cabo su función (controlar el flujo del

programa) mediante una condición que se representa utilizando expresiones booleanas, de tal manera

que cuando la condición se cumple (es verdadera) se ejecuta un conjunto de instrucciones definidas

para este caso y, dependiendo del tipo de estructura, es posible que se ejecute otro conjunto de

instrucciones distinto para el caso contrario (cuando la condición es falsa); e incluso, es posible definir

diferentes conjuntos de instrucciones para valores distintos que pudiera tomar una variable. Es así que

dependiendo de su estructura se han definido tres tipos: simples, dobles y múltiples.

Para el estudio de cada estructura selectiva, a continuación, se dedican tres subsecciones, una para

cada una, en las cuales entenderás cómo funcionan y la forman en que se codifican en lenguaje C.

3.1.1. Estructura selectiva simple (if)

La estructura de decisión simple, como su nombre lo indica, permite decidir entre ejecutar o no un

bloque de acciones; en pseudocódigo se propuso la palabra reservada Si para su representación y en

lenguaje C esta estructura se codifica mediante la sentencia de control if, tal como se muestra en la

siguiente tabla.

Pseudocódigo Diagrama de Flujo Código en C

 if(<condición>)
Si <condición>

entonces <instrucciones>

<instrucciones>

Fin Si

 Tabla 3.1: Representaciones de la estructura condicional simple

La <condición> puede ser cualquier expresión booleana y las <instrucciones>, llamadas cuerpo del Si

(if), bien puede ser una sola instrucción o un bloque de instrucciones.

La manera en la que se ejecuta una instrucción Si (if) es la siguiente: se evalúa la condición que

aparece entre paréntesis y si es verdadera (tiene un valor diferente de cero) entonces se ejecutan las

instrucciones del cuerpo del Si (if), en caso de no serlo no se ejecuta y continúa el flujo de ejecución.

 Universidad Abierta y a Distancia de México 5

U3 Programación

Estructuras de control

NOTA: En lenguaje C, cuando el cuerpo de una estructura tiene más de una instrucción éstas deben ir

encerradas entre llaves.

Para ilustrar las representaciones y el funcionamiento de la estructura selectiva simple se presenta el

siguiente problema, con el algoritmo en pseudocódigo y programa en lenguaje C.

Problema 3.1: Se requiere un programa que lea un valor entre 0 y 360 y determine el tipo de ángulo,

considerando que:

• Angulo agudo: Mayor a cero y menor de 90 grados

• Angulo reto: Es igual a 90 grados

• Angulo obtuso: Es mayor que 90 pero menor a 180 grados

• Angulo llano: Es igual a 180 grados

• Angulo cóncavo: Es mayor a 180 pero menor a 360 grados

El análisis del problema se resume en la siguiente tabla.

Análisis del problema

Tabla 3.2: Análisis del problema 3.1

Lo primero que se requiere es leer el valor del ángulo, posteriormente, verificar de qué tipo es para

imprimir el mensaje indicado. A continuación, se muestra el algoritmo, en pseudocódigo:

 Salida: Método:

Datos de entada:

Mensaje 1: “Agudo” Realizar comparaciones

Mensaje 2: “Recto” utilizando la estructura de

ángulo

Mensaje 3: “Obtuso” selección simple para

 Mensaje 4: “Llano” determinar el tipo de ángulo,

 Mensaje 5: “Cóncavo” se requiere una por cada tipo

 Universidad Abierta y a Distancia de México 6

U3 Programación

Estructuras de control

Inicio
Imprimir "Ingrese la medida del angulo (grados): "
Leer angulo

Fin

Algoritmo 3.1.a: Tipo de ángulo - pseudocódigo

Observa que, para hacer más legible el algoritmo en pseudocódigo, se han dejado sangrías para

indicar qué instrucciones forman el cuerpo de cada una de las estructuras Si y se han encerrado con

un rectángulo, esto se adoptará para cualquier bloque de instrucciones que corresponda al cuerpo de

una estructura.

Continuemos con la codificación. Observa que el cuerpo de cada una de las estructuras consta de una

instrucción por lo tanto no es necesario encerrarla entre llaves {}.

Si angulo≤0 OR angulo≤360 entonces
 Imprimir “No tiene clasificación"
Fin_Si

Si angulo>0 AND angulo<90 entonces
 Imprimir "El ángulo es agudo"
Fin_Si

Si angulo=90 entonces
 Imprimir "El ángulo es recto"
Fin_Si

Si angulo>90 AND angulo<180 entonces

 Imprimir “El ángulo es obtuso"

Fin_Si
Si angulo =180 entonces

 Imprimir "El ángulo es llano"

Fin_Si

Si angulo>180 AND angulo<360 entonces

 Imprimir “El ángulo es concavo"

Fin_Si

 Universidad Abierta y a Distancia de México 7

U3 Programación

Estructuras de control

Programa 3.1: tipoAngulo.c

Video 3.1: Consulta el video de desarrollo de la solución anterior,
también podrás encontrar el programa fuente c en el material
adicional de la unidad.

 Universidad Abierta y a Distancia de México 8

U3 Programación

Estructuras de control

Figura 3.1: Ejecución del programa tipoAngulo.c

En la presente unidad, se sugiere el uso de herramientas (applets) en

línea que podrás consultar en el sitio: http://www.pcg.ull.es/edapplets/en

donde existen distintas actividades para el estudio de las estructuras de

control, así como para algunos otros temas de programación.

Se sugiere consultes el video que contiene las bases de las estructuras de

control como los que podrías aplicar a lo largo de la unidad:

https://www.youtube.com/watch?v=3oK6SIIMnGk y

https://www.youtube.com/watch?v=txJnxfs10wk

A lo largo del texto se harán algunas sugerencias de información

adicional que corresponde a la sección Para saber más, pero serán

insertadas a lo largo de la unidad para complementar el contenido.

http://www.pcg.ull.es/edapplets/
https://www.youtube.com/watch?v=3oK6SIIMnGk
https://www.youtube.com/watch?v=txJnxfs10wk

 Universidad Abierta y a Distancia de México 9

U3 Programación

Estructuras de control

3.1.2. Estructura selectiva doble (if-else)

Las estructuras selectivas dobles nos permiten elegir alguna de dos posibles acciones a realizar

dependiendo de la condición. En pseudocódigo se propone usar las palabras reservadas Si-Sino y en C

se codifican mediante la sentencia if-else, tal como se muestra en la siguiente tabla.

Pseudocódigo Diagrama de Flujo Lenguaje C

Si (<condición>)

if(<condición>)

entonces

 <instruccionesV>

<instruccionesV>

 else

sino

 <instruccionesF>

<instruccionesF>

Fin Si-Sino

 Tabla 3.3: Representaciones de la estructura condicional doble

Al igual que en la estructura selectiva simple, la <condición> representa una expresión booleana y, las

<instruccionesV> y <instruccionesF> puede ser una o varias, a las primeras se les llama cuerpo del Si

(if) y las segundas son el cuerpo del Sino (else).

Esta estructura de control ejecuta sólo uno de los dos cuerpos de instrucciones: cuando la condición es

verdadera se ejecutan las <instrucciuonesV> y en caso contrario se ejecutan las <instruccionesF>.

En el desarrollo del siguiente problema se ejemplifican las representaciones y el funcionamiento de esta

estructura.

Problema 3.2: Se requiere un programa que solicite el año de nacimiento de un votante, determine si

su edad es válida para poder emitir su voto, si cumple con la condición y su edad es mayor o igual a los

70 años indicar al que pase a una casilla especial, en caso contrario indicar solo un mensaje de

bienvenida.

El algoritmo en pseudocódigo es el siguiente:

Inicio

Imprimir “Año de nacimiento: ”

Leer nac

edad = anio_actual – nac

 Universidad Abierta y a Distancia de México 10

U3 Programación

Estructuras de control

si (edad>=18) entonces
si (edad>=70) entonces
 imprimir “Pase a casilla especial”
 si no
 imprimir “Bienvenido”
 fin si_no
si no
 imprimir “Edad no valida para votar”
fin si_no

Fin

Algoritmo 3.2.a: Valida voto

Para la codificación en lenguaje C se debe notar que el cuerpo del Si (if) tiene un bloque de más

instrucciones, por lo que deberán ir encerradas entre llaves {}.

Programa 3.2: validavoto.c

En la siguiente figura se muestra la ejecución de este programa 3.2

 Universidad Abierta y a Distancia de México 11

U3 Programación

Estructuras de control

Figura 3.2: Ejecución del programa validavoto.c

Video 3.2: Consulta el video de desarrollo de la solución anterior,

también podrás encontrar el programa fuente c en el material

adicional de la unidad.

3.1.3. Estructura selectiva múltiple (switch-case)

Las estructuras selectivas múltiples permiten escoger uno de varios caminos posibles. Para la estructura

condicional múltiple se proponen las palabras clave Seleccionar-caso en pseudocódigo, misma que se

implementa en lenguaje C utilizando las palabras reservadas switch-case. Esta secuencia se utiliza

cuando existen múltiples posibilidades para la evaluación de una expresión matemática (generalmente

una variable), pues de acuerdo con el valor que tome la expresión será el conjunto de instrucciones que

se ejecute.

 Pseudocódigo Lenguaje

Casos para<expresión>

 switch (<expresión>)

{

caso<valor1>:

case<valor1>:

<instruccionesCaso1>

<instrucciones1>;

caso<valor2>:

 break;

<instruccionesCaso2>

 case<valor2>:

…

 <instrucciones2>;

otros casos:

 break;

<instruccionesOtros>

 default:

Fin_Casos

 <instruccionesOtras>

 }

 Diagrama de Flujo

 Universidad Abierta y a Distancia de México 12

U3 Programación

Estructuras de control

Tabla 3.4: Representaciones de la estructura condicional múltiple

En este caso la <expresión> no es booleana sino aritmética y de tipo entero, así cada caso corresponde

a un valor que puede resultar de su evaluación. De esta forma, el flujo de control que sigue la ejecución

de una instrucción Seleccionar-casos (switch-case) es el siguiente: se evalúa la <expresión> y si el

valor corresponde al valor de un caso, es decir a un <valori>, se ejecuta el bloque de <instruccionesi>

hasta encontrar el final de la instrucción, que en el caso de C está representado por la palabra reservada

break, terminando ahí la ejecución de la instrucción. Cuando el valor no corresponde a ningún caso se

ejecuta el bloque de instrucciones correspondiente a otros casos (default). El conjunto de todos los

casos, incluyendo el default, conforman el cuerpo de la estructura Seleccionar-casos (switch-

case).

Problema 3.3: Se requiere un programa que dada una calificación con número despliegue un mensaje,

de acuerdo con la siguiente información:

0-6: Reprobado

7: Suficiente, Aprobado

8: Bien, Aprobado

9: Notable, Aprobado

10: Sobresaliente, Aprobado

 Universidad Abierta y a Distancia de México 13

U3 Programación

Estructuras de control

En este caso es conveniente utilizar una estructura selectiva múltiple, en donde la expresión que se

evalúe sea la calificación del estudiante y se defina un caso por cada una de las calificaciones posibles.

Es claro, que la entrada únicamente es la calificación y la salida es el mensaje correspondiente. De lo

anterior el algoritmo en pseudocódigo y diagrama de flujo quedaría de la siguiente forma.

Algoritmo 3.3.a: Conversión de calificación numérica a letra - pseudocódigo

Es importante señalar que, a diferencia de las estructuras anteriores, el cuerpo de una estructura

selectiva múltiple siempre debe ir encerrado entre llaves {} cuando se codifica en C, más no así las

instrucciones que se definen para cada caso, ya que estás se acotan por las palabra reservadas case y

break, por tal motivo no debes olvidar escribir el break al final de cada caso de lo contrario también se

ejecutarán las instrucciones de los casos que aparezcan después.

Inicio
Imprimir “ Inserte una calificación: "

Leer nota Seleccionar (nota)
caso 0: caso 1: caso2: caso 3: caso 4: caso 5: caso 6:

Imprimir “Reprobado"
caso 7:

Imprimir "Suficiente, Aprobado"
caso 8:

Imprimir "Bien, Aprobado"
caso 9:

Imprimir “Notable, Aprobado”
caso 10:

Imprimir “Sobresaliente, Aprobado”
otros casos:

Imprimir "Esa nota es incorrecta" Fin_Casos
Fin

 Universidad Abierta y a Distancia de México 14

U3 Programación

Estructuras de control

Programa 3.3: calificacion.c

Video 3.3: Consulta el video de desarrollo de la solución anterior,

también podrás encontrar el programa fuente c en el material

adicional de la unidad.

 Universidad Abierta y a Distancia de México 15

U3 Programación

Estructuras de control

En la siguiente figura se muestra la ejecución de este programa con el valor de entrada igual a 8.

Figura 3.3: Ejecución del programa calificacion.c

A lo largo de esta sección has estudiado los tres tipos de estructuras selectivas y por medio de los ejemplos

presentados te has dado cuenta de la importancia y utilidad de estas estructuras, sin ellas sería imposible

construir programas que implicaran la toma de decisiones. Sin embargo, todavía existen problemas

que requieren de otro tipo de estructuras que permitan repetir una tarea un número determinado de

veces, la siguiente sección está dedicada a este tema.

3.2. Estructuras repetitivas

En la mayor parte del diseño o implementación de las soluciones que se plantea a problemas

específicos nos encontramos con instrucciones que deben ejecutarse un número determinado de

veces, si hacemos un análisis más profundo de estas situaciones, en la mayoría de las ocasiones nos

encontramos que las instrucciones son las mismas, pero que los datos varían, esto se hace posible

utilizando las estructuras repetitivas, generalmente llamadas ciclos.

Existen varias estructuras de repetición implementadas por los diferentes lenguajes de programación,

todas con la misma idea: repetir un conjunto de instrucciones, llamadas cuerpo del ciclo, dependiendo

de condición. En la mayoría de los ciclos el cuerpo se repite siempre y cuando la condición se cumpla,

sin embargo, también existe una estructura repetitiva que se repite en tanto que no se cumple la

condición. En esta sección sólo nos enfocaremos en las primeras que son las que están definidas en el

lenguaje C y en la mayoría de los lenguajes estructurados y orientados a objetos actuales. Cabe

mencionar que a cada una de las veces que se repite el ciclo se le conoce como iteración.

Cuando se utilizan ciclos dentro de un programa, te puedes enfrentar a dos posibles situaciones:

• Que conozcas desde el diseño cuántas veces deben repetirse las instrucciones (repetición

definida),

 Universidad Abierta y a Distancia de México 16

U3 Programación

Estructuras de control

• Que el número de veces que se deban repetir las instrucciones dependa de un valor que se

conoce hasta el momento de la ejecución del ciclo (repetición indefinida).

En el primer caso se necesitará una variable que funja como un contador, en la cual se registre el

número de iteraciones que se vayan ejecutando. En cambio, en las repeticiones indefinidas

generalmente se controlan mediante interruptores o banderas, o bien, con valores centinela.

Con los anterior puedes darte cuenta de que para las estructuras de control repetitivas es muy

importante el uso de variables auxiliares y que por la frecuencia con la que se utilizan dentro de un

algoritmo y por la función que realizan dentro del mismo toman un nombre especial: contadores,

acumuladores e interruptores.

Un contador es una variable comúnmente de tipo entero destinada a almacenar un valor que se irá

incrementando o decrementando en una cantidad constante. Se suelen utilizar mucho en procesos

repetitivos definidos, para contabilizar el número de veces que se repite un conjunto de acciones o

eventos, es decir en los cuerpos de las instrucciones repetitivas.

Sobre una variable contadora se realizan dos operaciones básicas: inicialización e incremento o

decremento, según sea el caso. Todo contador se debe inicializar con un valor inicial (0, 1...)

contador = Valor_Inicial

Cada vez que aparezca el evento a contar se ha de incrementar o decrementar en una cantidad fija (I,

D respectivamente) el valor del contador.

contador = contador+ I;

contador = contador- D;

Los contadores más utilizados tienen incrementos o decrementos de uno en uno, es por ello que la

simplificación de dichas expresiones es:

Expresión Expresión Simplificada

en lenguaje C

contador=contador +1; contador++

contador=contador -1; contador--

Es importante señalar que en lenguaje C hay tres diferentes estructuras repetitivas: while (Mientras-

hacer), for (Desde-mientras) y do-while (Hacer-mientras), con todas ellas es posible modelar ciclos

definidos o indefinidos, pues las tres son equivalentes, es decir, cualquiera de ellas se puede expresar

en términos de las otras.

 Universidad Abierta y a Distancia de México 17

U3 Programación

Estructuras de control

3.2.1. Estructura Mientras (while)

La estructura repetitiva Mientras, codificada en lenguaje C con la palabra reservada while, controla

las repeticiones a partir de una condición que se evalúa al inicio del ciclo, de esta manera en cada

iteración primero se evaluará la condición y mientras resulte verdadera se repetirá el ciclo. En la

siguiente tabla se muestran las representaciones del ciclo Mientras (while).

Pseudocódigo Diagrama de Flujo Lenguaje C

Mientras <condición>hacer while (<condición>)

Condición

F

<instrucciones>

<instrucciones>;

 V

Fin mientras instrucciones

Tabla 3.5: Representaciones de la estructura repetitiva Mientras (while)

La manera en la que se ejecuta una instrucción Mientras (while) es la siguiente: las

<instrucciones> del cuerpo del ciclo se ejecutan mientras la <condición> es verdadera, cuando

esto no se cumple se termina el ciclo; de esta forma, si la primera vez que se evalúa la condición esta

es falsa, el cuerpo del ciclo no se ejecuta ni una sola vez.

Para ejemplificar cómo se construye un ciclo indefinido utilizando un valor centinela, se propone el

siguiente problema.

Problema 3.4: Se requiere un programa que calcule el promedio de temperaturas que registra una

ciudad, las temperaturas se introducirán en grados Fahrenheit °F y no se conoce de antemano el número

de temperaturas que el usuario introducirá.

Para resolver el problema planteado se podría pedir el número de temperaturas que se desean

registrar para calcular el promedio, pero esto equivale a una estructura de repetición definida, si

decidiéramos dejar abierto este dato hasta el momento de la ejecución del programa, tendríamos que

construir una condición que haga que el ciclo se repita mientras que el usuario desea ingresar

temperaturas. Pero ¿cómo se puede resolver esto? En casos como este se propone utilizar un valor

centinela que indique el fin de la captura de datos. Claramente el valor centinela debe ser

seleccionado de tal forma que no se confunda con algún valor de entrada aceptable, por ejemplo

podríamos considerar que dado que existe un límite mínimo de temperaturas en grados Fahrenheit, a

saber -460°F, el valor centinela sería cualquier número inferior a éste, es claro que no existe una

 Universidad Abierta y a Distancia de México 18

U3 Programación

Estructuras de control

temperatura más baja, sin embargo el límite máximo es difícil de definir ya que en forma experimental

se obtienen en los laboratorios temperaturas de miles de grados, mientras que en una explosión

atómica se alcanzan temperaturas de millones de grados. Se supone que la temperatura en el Sol

alcanza los mil millones de grados (Pérez, 1992, pág. 325).

Para calcular el promedio, debemos realizar la suma de todas las temperaturas y dividirlas entre el

número total de temperaturas (𝑡𝑒𝑚𝑝𝐹1+𝑡𝑒𝑚𝑝𝐹2+ …,+ 𝑡𝑒𝑚𝑝𝐹𝑛) que se hayan leído, digamos 𝑛. Lo

anterior se expresa con la siguiente fórmula.

Así que en este caso se usará un ciclo que vaya leyendo una a una las temperaturas (almacenándolas

en la variable) y acumulando la suma en la variable, estas acciones se repetirán hasta que el usuario

introduzca un número menor a -460. De esta manera, la condición de término es: ≥ −460; por lo que

antes de iniciar el ciclo se debe pedir la primera temperatura, para que se compare con la condición y

si es mayor a -460 se acumule en la suma. Además, se utilizará un contador para registrar el número

de temperaturas que se lean. Finalmente, cuando se termina el ciclo se divide el resultado de la suma

de las temperaturas entre el valor del contador. Lo anterior se expresa en el siguiente pseudocódigo.

Algoritmo 3.4.a: Promedio temperaturas - pseudocódigo

El siguiente paso es la codificación, para la cual se determinó utilizar una variable para representar el

valor centinela que controla el ciclo.

Inicio

c←0, sumaF←0

Imprimir "Ingrese la primer temperatura registrada en grados Fahrenheit:" Leer tempF

Mientras (tempF≥-460) c←c+1 sumaF=sumaF+tempF

Imprimir "Ingrese la siguiente temperatura en grados Fahrenheit (un número mayor a -

460) para calcular el promedio"

Leer tempF Fin Mientras

promF←sumaF/c

Imprimir “El promedio de las temperaturas es” promF

Fin

 Universidad Abierta y a Distancia de México 19

U3 Programación

Estructuras de control

Programa 3.4: promTemp.c

Video 3.4: Consulta el video de desarrollo de la solución anterior,

también podrás encontrar el programa fuente c en el material

adicional de la unidad.

Por último, en la siguiente figura se muestra la ejecución del programa.

 Universidad Abierta y a Distancia de México 20

U3 Programación

Estructuras de control

Figura 3.4: Ejecución del programa promTemp.c

3.2.2. Estructura Desde-mientras (for)

El ciclo Desde-mientras, en inglés y lenguaje C for, evaluará una condición y mientras ésta sea

verdadera se ejecutará el conjunto de instrucciones definidas en el cuerpo de la estructura,

generalmente las repeticiones se controlan por un contador, ya que como parte de su sintaxis tiene la

opción de inicializar una variable (el contador) e incrementarlo o decrementarlo. Este tipo de estructura

es conveniente utilizarla cuando se conoce de antemano el número de veces que se debe repetir el

ciclo (ciclos definidos). Sus representaciones se muestran en la siguiente tabla.

Pseudocódigo Diagrama de Flujo

Desde

<inicialización>Mientra

s<condición>,

<incr/decr>
<Instrucciones>

Fin desde

Lenguaje C
for (<inicialización>;<condición>; <inc/dec>)

<instrucciones>

Tabla 3.6: Representaciones de la estructura repetitiva Desde-mientras (for)

 Universidad Abierta y a Distancia de México 21

U3 Programación

Estructuras de control

En este caso, primero se realiza la <inicialización> que corresponde a la asignación de un valor inicial

de una variable (el contador), posteriormente se evalúa la <condición> si es verdadera se ejecutan las

<instrucciones> del cuerpo del ciclo y, posteriormente, se incrementa o decrementa el contador, según

sea el caso, para después volver a repetir el ciclo, excepto por la <inicialización> que sólo se ejecuta

una vez.

Para ejemplificar las representaciones, codificación y funcionamiento de esta estructura se presenta el

siguiente problema desarrollado.

Problema 3.5: Se requiere un programa que calcule el total de la nómina de los trabajadores de una

empresa.

El problema es similar al que se presentó en la sección anterior, se debe leer el pago de cada

trabajador y realizar la suma de cada uno de éstos, para lo cual se puede utilizar un acumulador. La

diferencia es que en este caso no se utilizará un valor centinela para terminar la lectura de los pagos,

pues se preguntará al usuario al inicio del programa cuántos trabajadores hay, así el número de

iteraciones quedará determinado antes de iniciar el ciclo. De lo anterior tenemos que si el número de

empleados es n entonces el ciclo debe repetirse n-veces, para lo cual se utilizará un contador c que

debe tomar los valores 1,2,…, n, así que el ciclo debe repetirse siempre que c ≤ n. En cuanto a la

suma de los pagos, se utilizará un acumulador, al cual llamaremos nom, que se inicializará en cero

dado que se trata de una suma. Observa la solución del problema.

Algoritmo 3.5.a: Nómina - pseudocódigo

Inicio

Imprimir "Ingrese el total de empleados: " Leer n

Desde c=1 , nom=0, Mientras (c<=n), c=c+1

Imprimir “Ingresa el salario del trabajador”, c

Leer sal nom=nom+sal

Fin desde

Imprimir “La nómina a pagar es en total $”, nom

Fin

 Universidad Abierta y a Distancia de México 22

U3 Programación

Estructuras de control

Por lo tanto, la salida del algoritmo es: “La nómina a pagar es $45”. La codificación sería la siguiente.

Programa 3.5: nomina.c

Video 3.5: Consulta el video de desarrollo de la solución anterior, también

podrás encontrar el programa fuente c en el material adicional de la unidad.

En la siguiente figura se muestra la ejecución del programa.

 Universidad Abierta y a Distancia de México 23

U3 Programación

Estructuras de control

Figura 3.5: Ejecución del programa nomina.c

3.2.3. Estructura Hacer-mientras (do-while)

A diferencia de las estructuras repetitivas anteriores, en las cuales las condiciones se evalúan al principio

del ciclo, por lo que las instrucciones que se repiten se ejecuten de 0 hasta N veces, en la estructura

Hacer-mientras (do-while) la evaluación se lleva acabo al final, esto implica que el conjunto de

instrucciones que se repite se ejecuta al menos una vez.

Pseudocódigo Diagrama de Flujo Lenguaje C

Hacer do

<instrucciones> <instrucciones>;

 while(<condición>);

Mientras <condición>Fin

Tabla 3.7: Representaciones de la estructura repetitiva Hacer-mientras (do-while)

 Universidad Abierta y a Distancia de México 24

U3 Programación

Estructuras de control

Observa que, en el código en C, la única estructura de control, de todas las que hemos visto, que tiene

punto y coma después de la expresión o condición es el do-while.

Por el funcionamiento de la estructura, el caso típico del uso del do-while son los menús. Para

ejemplificar lo anterior se propone el siguiente problema.

Problema 3.6: Se requiere un programa que imprima un menú con las siguientes opciones, el cual se

repita en tanto no se elige la opción d (Salir).

a. Calcular la fuerza

b. Calcular la aceleración

c. Calcular la masa

d. Salir

Además, dependiendo de la opción que elija el usuario se deberá realizar la tarea indicada utilizando la

segunda ley de Newton que dicta: “La aceleración que un cuerpo adquiere es directamente proporcional

a la resultante de las fuerzas que actúan en él, y tiene la misma dirección en el sentido que en dicha

resultante”

En este caso, para resolver la parte del menú se utilizará un switch-case, en el que cada opción del

menú corresponda a un caso, así las instrucciones que lo forman deben ser: la lectura de los datos

correspondientes y la operación apropiada (que se define despejando la variable en cuestión de la

fórmula dada). Para que el menú se repita se plantea un ciclo while que se ejecute mientras la opción

sea distinta de 4 (Salir). De esta forma el algoritmo se presenta a continuación en sus dos

representaciones.

 Universidad Abierta y a Distancia de México 25

U3 Programación

Estructuras de control

Algoritmo 3.6.a: Segunda ley de Newton - pseudocódigo

A continuación, se presenta el diagrama de flujo, salvo que únicamente se ha dejado indicado en donde

van las instrucciones de los tres primeros casos, ya definidas en el pseudocódigo.

Inicio
Hacer
Imprimir "Realiza Cálculos trabajando la 2a. Ley de Newton"
Imprimir " --"
Imprimir " a. Fuerza." Imprimir " b. Aceleración."
Imprimir " c. Masa." Imprimir " d. Salir."
Imprimir " Elegir una Opción: "
Leeropc Selecciona (opc)

Caso 1:
Imprimir "Ingresa La masa:” Leer m
Imprimir “Ingresa la aceleración:”
Leer a
f = m*a
Imprimir “Fuerza = ”, f

Caso 2:

Imprimir "Ingresa la fuerza:” Leer f
Imprimir “Ingresa la masa:”
Leer m a = f/m
Imprimir “Aceleración = ”, a

Caso 3:

Imprimir "Ingresa la fuerza:” Leer f
Imprimir “Ingresa la aceleración:”
Leer a
m = f/a
Imprimir “Masa = ”, m

Caso 4:
Imprimir "Adios"

Otro:
Imprimir " Opción inválida"

Fin_Selecciona

Mientras (opc!=4) Fin

Fin

 Universidad Abierta y a Distancia de México 26

U3 Programación

Estructuras de control

Algoritmo 3.6.b: Segunda ley de Newton – diagrama de flujo

En el diagrama de flujo se puede observar claramente que el ciclo se ejecutará mientras el usuario no

elija la opción d, que corresponde a salir. Por lo que no se deja como ejercicio al lector la validación del

algoritmo.

La codificación del algoritmo se muestra enseguida.

/* Programa: newton.c
Descripción: Muestra un menú para calcular la aceleración, fuerza o

masa, conforme a la segunda ley de Newton */
/*directivas de preprocUnADMor*/

#include <stdio.h>

 Universidad Abierta y a Distancia de México 27

U3 Programación

Estructuras de control

#include <stdlib.h>

#include <conio.h>
/*Función Principal*/

main ()
{

/*Declaración de variables*/

char opc;
float f,m,a;

/*Ciclo para repetir el menú mientras que la opción no sea salir*/

do

{

/*Impresión del menú*/
system ("cls");

/*Instrucción para borrar la pantalla*/
printf ("\n Realiza Calculos trabajando la 2a. Ley de Newton");

printf ("\n --");

printf ("\n a. Fuerza. \n b. Aceleracion \n c. Masa \n d. Salir");

printf ("\n Elige una opcion: ");
/*Instrucción que lee una variable de tipo carácter*/

opc=getche();
/*Estructura de Sección Múltiple*/

witch (opc)
{

 case 'a':

printf ("\n\nIngresa la masa: ");

scanf("%f",&m);
printf ("\nIngresa la aceleracion: ");

scanf("%f",&a);
f=m*a;
printf("\nLa fuerza es %.2f\n\n\t",f);

system ("pause");
break;

case 'b':

printf ("\n\nIngresa la fuerza: ");

scanf("%f",&f);
printf ("\nIngresa la masa: ");

scanf("%f",&m);
a=f/m;

printf("\nLaaceleracion es %.2f\n\n\t",f);

system ("pause");
break;

case 'c':

printf ("\n\nIngresa la fuerza: ");

scanf("%f",&f);
printf ("\nIngresa la aceleración: ");

 Universidad Abierta y a Distancia de México 28

U3 Programación

Estructuras de control

scanf("%f",&m);
m=f/a;
printf("\nLa masa es %.2f\n\n\t",f);

system ("pause");
break;

case 'd':

printf ("\n\nAdios\n");

system ("pause");
break;

default:

printf ("\n\n Opcion Invalida");

}

/*Fin dela Selección Múltiple*/
}while (opc!='d'); }/*Fin*/

Programa 3.6: newton.c

En la siguiente figura se muestra la ejecución de una iteración del ciclo, en la cual la opción elegida es

la primera.

Figura 3.6: Ejecución del programa newton.c

Observa que dentro del cuerpo del ciclo se definió una estructura selectiva, es decir, que las

instrucciones del cuerpo de cualquier estructura compuesta, sea repetitiva o selectiva, puede contener

a otras. Uno de los casos más utilizados es el anidamiento de los if´s, de lo cual hablaremos en la

 Universidad Abierta y a Distancia de México 29

U3 Programación

Estructuras de control

siguiente sección. Pero antes de dar por terminada esta sección se propone la siguiente actividad.

3.3. Estructuras Anidadas

Las estructuras de control selectivas y repetitivas se consideran compuestas ya que se forman a partir

de otras instrucciones que son las que se ejecutaran de acuerdo con una condición dada. Es

importante remarcar que las instrucciones que forman el cuerpo de una estructura pueden ser también

estructuras compuestas, como se demostró en la solución del último problema visto (ver algoritmo 3.6

y programa 3.6), en el cual un switch está dentro de un while. Así que es posible anidar cualquier

tipo de estructura, sin embargo, lo más común es anidar instrucciones if, pues se utilizan cuando se

tienen varios casos, por ejemplo, si revisamos nuevamente el problema 3.1, donde se quiere

determinar el tipo de ángulo, es mejor solución utilizar if-anidados para resolverlo porque así no se

evalúan condiciones que, una vez que se ha definido el tipo de ángulo, son innecesarias.

Para ilustrar lo anterior, a continuación se muestra el pseudocódigo y su codificación para la solución

del mismo problema.

Algoritmo 3.7: Tipo de ángulo (versión 2)- pseudocódigo (Fuente: elaboración propia)

Inicio
Imprimir "Ingrese la medida del angulo (grados): "
Leer angulo

Si angulo≤0 OR angulo≤360 entonces

Imprimir “No tiene clasificación"
Sino Si angulo<90 entonces

Imprimir "El ángulo es agudo"
Sino Si angulo=90 entonces

Imprimir "El angulo es recto"
Sino Si angulo<180 entonces

Imprimir “El angulo es obtuso"
Sino Si angulo =180 entonces

Imprimir "El angulo es llano"
Sino

Imprimir “El angulo es concavo"
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin

 Universidad Abierta y a Distancia de México 30

U3 Programación

Estructuras de control

Si realizas la prueba de escritorio con el ángulo igual a 90 grados, podrás darte cuenta de que a

diferencia de la primera versión del algoritmo donde se evalúan todas las condiciones, aquí sólo se

evalúan las tres primeras, en los dos primeros Si es falsa y por lo tanto se ejecutan las instrucciones

del Sino correspondiente, pero en el tercer Si anidado la condición es verdadera y se imprime el tipo

de ángulo, posteriormente se acaba el anidamiento.

El programa en C es el siguiente:

main ()
{

/*Declaración de variables */ intangulo;

/*Mensaje de bienvenida*/

printf ("\nEste programa determina de que tipo es el angulo

dado.");

/*Instrucciones */

printf ("\n\nIngrese la medida del angulo (grados): ");

scanf ("%d",&angulo);
if (angulo<=0 || angulo>=360)
printf ("\n No tiene clasificación");

else if (angulo<90)
printf ("\n El angulo es agudo");

else if (angulo==90)
printf ("\n El angulo es recto");

else if (angulo<180)
printf ("\nElanguloesobtuso");

else if (angulo ==180)
printf ("\n El angulo es llano");

else
printf ("\nElangulo es concavo");

printf

("\n\n

\t");

system

("paus

e");
}

 Universidad Abierta y a Distancia de México 31

U3 Programación

Estructuras de control

Programa 3.7: tipoAngulo2.c

La ejecución con el ángulo igual a 90 grados se muestra en la siguiente figura.

Figura 3.7: Ejecución del programa tipoAngulo2.c

Con este ejemplo se da por terminada esta unidad, ahora ya conoces todas las estructuras y has visto

cómo funcionan y qué tipo de situaciones se puede modelar con ellas. Aunque cabe destacar que para

solucionar cualquier problema basta con que sepas utilizar el ciclo while y la estructura selectiva if-

else, pues ya se mencionó que todos los ciclos son equivalentes y con la estructura if-else,

puedes modelar un switch-case anidando if´s.

3.4. Arreglos

El uso de arreglos facilita y hace más eficiente la declaración y manipulación de una colección de

datos de un mismo tipo que están relacionados entre sí, como es el caso de las calificaciones en el

Problema1, ya que todas las calificaciones se pueden considerar como valores enteros.

Problema 3.7: Se requiere un programa para llevar el registro de calificaciones de un grupo de diez

estudiantes y generar reportes que incluyan datos como el promedio del grupo, la calificación máxima,

el número de estudiantes que tienen una calificación superior al promedio del grupo, entre otros.

En este caso, a diferencia de los ejemplos anteriores, es claro que las calificaciones de cada

estudiante se puede tratar como un dato simple e independiente de los otros, sin embargo las

operaciones que se desean realizar serán las mismas para todo el conjunto de calificaciones, de tal

forma que habría que escribir una serie de instrucciones secuenciales para ingresar cada dato y

procesarlo. Por ejemplo, para ingresar los datos se requiere leer una por una cada calificación, para

 Universidad Abierta y a Distancia de México 32

U3 Programación

Estructuras de control

obtener el promedio se tendría que hacer la suma de todas y después dividirlas entre 10, hasta aquí

no se ha complicado mucho, pero imagina todas las comparaciones que debes hacer para identificar

cuál es la calificación mayor. Es claro que este método resulta de lo más ineficiente, y por supuesto si

consideramos la posibilidad de modificar el programa para que sea capaz de procesar 60 o más

calificaciones, el programa además de extenderse, implica reestructurarlo en su totalidad y que éste

sea más complejo que la versión anterior. En cambio si consideramos a todos las calificaciones como

un dato estructurado podemos hacer uso de una estructura de dato que nos facilite su manipulación.

Existen diferentes tipos de estructuras de datos, cada una caracterizada por la forma de acceso a sus

elementos, y el tipo que estos pueden tener, así tenemos arreglos, listas, colas, tablas, pilas, entre

otros. No obstante, para este tema nos centraremos sólo en las estructuras de datos que implementa

el lenguaje C de forma directa: los arreglos.

La solución del problema representada en pseudocódigo se muestra en el siguiente algoritmo.

inicio

suma ← 0

Desde i ← 0 mientras i<10, i ← i+1

 Imprimir “Ingresa la calificación” i

 Leer calif[i]

suma← suma+calif[i]

Fin Desde

prom ← prom/10

Imprimir “Las calificaciones ingresadas fueron:”

Desde i ← 0 mientras i<10, i ← i+1

Imprimir “Calificación” i “:” calif[i]

Fin Desde

Imprimir “Calificación promedio = ” prom

Fin

Algoritmo 3.8. Promedio de calificaciones

 Universidad Abierta y a Distancia de México 33

U3 Programación

Estructuras de control

La codificación del algoritmo anterior es la siguiente:

/*Directivas de preprocesador*/

#include <stdio.h>

#include <stdlib.h>

/* Definimos como constante simbólica el tamaño del arreglo*/

#define TAM 10

/* Definición de función principal */

main()

{

/*Declaración del arreglo calificaciones*/

int calif[TAM];

double prom

= 0;

int i;

printf(“*** “);

printf(“* El siguiente programa calcula el promedio de

*\n");

printf(“* un grupo de diez estudiantes”);

printf(“***”);

/*Lectura y suma de las calificaciones*/

for(i=0; i < TAM; i++)

{

printf("Proporciona la calificación %d: ",i+1);

scanf(“%d”, &calif[i]);

prom = prom + calif[i];

 }

/*Cálculo e impresión del promedio*/

prom = prom/TAM;

/*Impresión de las calificaciones*/

printf("\nLas calificaciones ingresadas fueron:

\n"); for(i=0; i < TAM; i++)

printf("\nCalificacion %d: %d",i+1, calif[i]);

printf("\n\n\tPromedio = %.2f\n\n", prom);

system("pause");

}

Programa 3.8: promCalificaciones.c

 Universidad Abierta y a Distancia de México 34

U3 Programación

Estructuras de control

En la siguiente figura se muestra una ejecución del programa.

Figura 3.8: Ejecución del programa promCalificaciones.c

Se sugiere consultes el video que contiene las bases de los arreglos como los que

podrías aplicar a lo largo de la unidad:

https://www.youtube.com/watch?v=gCBpGyKyaGU.

3.4.1. Definición y tipos de arreglos

“Un arreglo se define como una colección finita, homogénea y ordenada de elementos. Finita ya que

para todo arreglo debe especificarse el número máximo de elementos que podrá contener; la

homogeneidad se refiere a que todos los elementos deben ser del mismo tipo, y ordenada porque es

posible determinar cuál es el primer elemento, cual el segundo, y así hasta el enésimo elemento”

(Cairo Osvaldo, Guardati Buemo Silvia, 1993).

La posición que ocupa un elemento dentro de un arreglo se le denomina formalmente índice y siempre

es un número entero. El tamaño o longitud de un arreglo se define como el número de elementos que

https://www.youtube.com/watch?v=gCBpGyKyaGU

 Universidad Abierta y a Distancia de México 35

U3 Programación

Estructuras de control

lo constituyen. La dimensión de un arreglo está relacionada con el número de índices necesarios para

especificar un elemento en particular.

Podemos clasificar a los arreglos de acuerdo con su dimensión como unidimensionales o

multidimensionales.

Los arreglos unidimensionales(también llamados lineales) reciben su nombre debido a que cualquier

elemento es referenciado por un único índice, por ejemplo retomando el caso de las calificaciones del

problema 3.7, éstas pueden ser almacenadas en un arreglo unidimensional como el que se muestra en

la Figura 3.9, en donde el nombre del arreglo es lista y los nombres de las variables donde se

almacenan las calificaciones son: lista[0], lista[1], lista[2], lista[3], lista[4] …, lista[9]. En este caso el

nombre en común es lista y lo único que cambia para cada elemento es el número que le corresponde

a cada variable según la posición que ocupa en la lista. Observa que un solo índice es suficiente para

diferenciar a un elemento de otro.

Figura 3.9. Representación gráfica de un arreglo unidimensional

Por otro lado los arreglos multidimensionales son aquellos para los cuales un solo índice no es

suficiente para poder referenciar a un elemento individual, los arreglos bidimensionales son el caso

más comúnmente utilizado de arreglos multidimensionales y por tanto los únicos que presentaremos.

“Un arreglo bidimensional es un conjunto de datos homogéneos, finito y ordenado, donde se hace

referencia a cada elemento por medio de dos índices. El primero de los cuales generalmente se utiliza

para indicar renglón y el segundo para indicar columna” (Cairo Osvaldo, Guardati Buemo Silvia, 1993)

Un arreglo bidimensional también puede verse como una tabla de valores, o bien como un arreglo de

arreglos, de ahí la necesidad de dos índices, en la Figura 3.10 se muestra un ejemplo gráfico de un

 Universidad Abierta y a Distancia de México 36

U3 Programación

Estructuras de control

arreglo bidimensional, en la cual del lado derecho podemos ver al arreglo como una tabla y del lado

izquierdo representado como un arreglo de arreglos, Observa que cada renglón de la tabla es cada

uno de los elementos del arreglo de arreglos. Es claro que con un solo índice no podríamos identificar

a un único elemento ya que solo podríamos ubicar toda una columna o todo un renglón, en cambio la

combinación de renglón-columna si nos identifica a un elemento en particular.

Figura 3.10 Representación gráfica de un arreglo bidimensional

3.4.2. Declaración e inicialización

En lenguaje C los índices de los arreglos siempre empiezan en cero, es decir, al primer elemento del

arreglo le corresponde la posición 0, al segundo la posición 1, al tercero la posición 2 y así

sucesivamente hasta llegar al elemento TAM-1, donde TAM corresponde al tamaño del arreglo.

La declaración de un arreglo consiste en reservar espacio de memoria suficiente para el conjunto de

datos homogéneos. La declaración de una variable de tipo arreglo sigue las mismas reglas que para

las variables simples; con la diferencia de que ahora será necesario especificar el tamaño del arreglo,

esto se hace escribiendo el tamaño del arreglo encerrado entre corchetes [TAM], después del

identificador.

 Universidad Abierta y a Distancia de México 37

U3 Programación

Estructuras de control

La sintaxis para la declaración de un arreglo unidimensional en lenguaje C es la siguiente:
<tipo><nombre>[<tamaño>];

Y para un arreglo bidimensional es:
<tipo><nombre>[<tamaño1>] [<tamaño2>];

El tipo de dato para los arreglos puede ser cualquier tipo básico, es decir entero, flotante o carácter (en

C int, float, double o char). De todos ellos los arreglos de tipo carácter (char) tienen un

tratamiento especial, ya que un arreglo de este tipo se considerara una cadena. Debido a la

importancia que tienen las cadenas en la programación más adelante los trataremos de manera

particular.

Al igual que las variables simples, un arreglo puede inicializarse al momento de ser declarado, para

ello se utiliza el operador asignación “=”, pero como un arreglo almacena a un conjunto de datos, es

necesario inicializarlo con un conjunto de valores, los cuales se indican mediante llaves, separando por

comas cada elemento del conjunto de valores iniciales, la sintaxis se muestra a continuación:

<tipo><nombre>[<tamaño>]={<valor0>,<valor1>,…,<valorTAM-1>};

La asignación de cada valor inicial se hace consecutivamente desde el elemento 0, por tanto no es

posible asignar valores a elementos salteados.

Veamos como ejemplo la declaración del arreglo unidimensional lista (Figura 3.9) planteado para las

calificaciones del problema 3.7. Inicializando sus elementos en la declaración queda como:
int lista[10] = {9,10,8,5,9,6,7,9,4,8};

En el caso de los arreglos bidimensionales la sintaxis es la siguiente:
<tipo><nombre>[<tamaño1>][<tamaño2>]={ {<valor00>,<valor01>,…,<valor0(TAM21)>},

{<valro10>,<valor11>,…,<valor1(TAM21-1)>},…,
{<valor(TAM1-1)0>,<valor (TAM2-1)1>,…,<elem(TAM1-1)(TAM2-1)>}
};

Veamos ahora como queda la declaración del arreglo bidimensional tabla mostrado en la Figura 3.10,

inicializando sus valores:
int tabla[5][3]={{9,10,8},{5,9,6},{7,9,4},{8,9,6},{7,9,4}};

Aunque también es posible declararlo de la siguiente forma:
int tabla[5][3]={9,10,8,5,9,6,7,9,4,8,9,6,7,9,4};

Esta es debido a que como ya se dijo antes un arreglo bidimensional se pude ver como un arreglo de

arreglos.

 Universidad Abierta y a Distancia de México 38

U3 Programación

Estructuras de control

Por otro lado, en lenguaje C siempre es necesario especificar el tamaño del arreglo al momento de

declararlo, sin embargo esto se puede hacer de forma explícita o implícita.

• Explícitamente es cuando se especifica el tamaño dentro de los corchetes que siguen al

identificador, como en los ejemplos anteriores.

• De forma implícita se hace cuando el arreglo es inicializado con un conjunto de valores, y

se omite el tamaño dentro de los corchetes, entonces el compilador asume el tamaño del

arreglo igual al tamaño del conjunto de valores iniciales, de tal forma que la declaración del

arreglo lista puede quedar como:

int lista[] = {9,10,8,5,9,6,7,9,4,8};

Observa que en este caso no se escribe el tamaño dentro de los corchetes, pero como hay 10

elementos en el conjunto de valores iniciales, el compilador de C asume un tamaño 10 para el arreglo.

Para los arreglos bidimensionales, sólo es posible especificar una dimensión de forma implícita, el

tamaño de renglones siempre debe hacerse de forma explícita.

La asignación de un conjunto de valores al arreglo, en una sola operación de asignación, únicamente

es posible en su declaración, si se intenta realizar en otro momento el compilador marcará un error, ya

que en cualquier otra parte del programa sólo se podrán asignar valores simples a cada uno de los

elementos por separado.

Es importante señalar que cuando se desea inicializar el arreglo al declararlo, es posible inicializar sólo

algunos de sus elementos, pero en este caso se tendría que especificar explícitamente el tamaño,

además se debe recordar que la asignación de valores iniciales es consecutiva desde el elemento 0.

Los elementos para los cuales no se indique un valor inicial, automáticamente se inicializan en cero.

Por ejemplo la declaración
int lista[10] = {5};

Reservará espacio en memoria para los 10 elementos del arreglo de los cuales al primer elemento se

le asignará un 5 y al resto se les asignará un cero.

En el caso de los arreglos bidimensionales es posible declara sólo algunos elementos por renglón,

siempre y cuando los elementos sean consecutivos, como en el caso de los unidimensionales. Por

ejemplo la siguiente declaración para el arreglo tabla:
int tabla[5][3]={{9,10},{5},{7,9,4},{8,9,}};

Daría como resultado la siguiente asignación de valores iniciales

 Universidad Abierta y a Distancia de México 39

U3 Programación

Estructuras de control

 [0] [1] [2]

[0] 9 10 0

[1] 5 0 0

[2] 7 9 4

[3] 8 9 0

[4] 0 0 0

En el caso de que la declaración fuera:

int tabla[5][3]={9,10,5,7,9,4,8,9,};

Entonces la asignación de valores iniciales se haría de la siguiente forma

 [0] [1] [2]

[0] 9 10 5

[1] 7 9 4

[2] 8 9 0

[3] 0 0 0

[4] 0 0 0

3.4.3. Acceso a los elementos de un arreglo

Para referirse a un elemento del arreglo es necesario indicar el nombre del arreglo seguido del índice o

índices correspondientes al elemento que deseamos acceder. Para ello se debe seguir la siguiente

sintaxis.

Elementos de un arreglo unidimensional:

<nombre del arreglo>[<índice>];

Elementos de un arreglo bidimensional:
<nombre del arreglo>[<índice de renglón>][<índice de columna>];

Observa que para cada índice se utilizan corchetes separados.

Cada elemento del arreglo se puede tratar igual que a cualquier otra variable, es decir, podemos

asignarle un valor, incluir en una expresión algebraica o lógica, imprimir en pantalla su valor, asignarle

desde el teclado un valor, etc.

 Universidad Abierta y a Distancia de México 40

U3 Programación

Estructuras de control

 Instrucción Descripción

 tabla[0][2] = 8; Asignar el valor de 8 al tercer elemento

 del primer renglón de arreglo tabla

printf(“%d”,lista[4]);

Imprimir en pantalla el quinto elemento del

arreglo lista

scanf(“%d”,&tabla[0][0]);

Lee un entero desde teclado y asignarlo en

la primera posición del arreglo tabla.

lista[1]++;

Incrementar en uno el valor del segundo

elemento del arreglo lista

Actividades

La elaboración de las actividades estará guiada por tu docente en línea, mismo que te

indicará, a través de la Planeación didáctica del docente en línea, la dinámica que tú y

tus compañeros (as) llevarán a cabo, así como los envíos que tendrán que realizar.

Para el envío de tus trabajos usarás la siguiente nomenclatura: BPRG_U3_A1_XXYZ,

donde BPRG corresponde a las siglas de la asignatura, U3 es la unidad de

conocimiento, A1 es el número de actividad, el cual debes sustituir considerando la

actividad que se realices, XX son las primeras letras de tu nombre, Y la primera letra de

tu apellido paterno y Z la primera letra de tu apellido materno.

Autorreflexiones

Para la parte de autorreflexiones debes responder las Preguntas de Autorreflexión

indicadas por tu docente en línea y enviar tu archivo. Cabe recordar que esta actividad

tiene una ponderación del 10% de tu evaluación.

Para el envío de tu autorreflexión utiliza la siguiente nomenclatura:

BPRG_U3_ATR _XXYZ, donde BPRG corresponde a las siglas de la asignatura, U3 es

la unidad de conocimiento, XX son las primeras letras de tu nombre, y la primera letra

de tu apellido paterno y Z la primera letra de tu apellido materno

 Universidad Abierta y a Distancia de México 41

U3 Programación

Estructuras de control

Cierre de la unidad

En esta Unidad hemos aprendido a utilizar las estructuras de control y los arreglos elementos

importantes en la base del conocimiento de la programación es importante seguir practicando para

mantener un nivel de conocimiento base, por otro lado, pueden ir viendo temas como programación

orientada a objetos como complemento de la programación.

Para saber más

• Puedes encontrar más información acerca de diagramas de flujos, pseudocódigo y algunos

programas para desarrollar en C en los siguientes vínculos:

http://pseint.sourceforge.net/index.php?page=documentacion.php

http://www.c.conclase.net/curso/index.php

http://zinjai.sourceforge.net/index.php?page=documentacion.php

http://pseint.sourceforge.net/index.php?page=documentacion.php
http://www.c.conclase.net/curso/index.php
http://zinjai.sourceforge.net/index.php?page=documentacion.php

 Universidad Abierta y a Distancia de México 42

U3 Programación

Estructuras de control

Fuentes de consulta

Fuentes básicas

• Böhm, C., & Jacopini, G. (1966). Flow diagrams, Turing machines, and languages only with two
formation rules". Communications of the ACM, 9 (5), 366-371.

• Cairó, O. (2005). Metodología de la programación: Algoritmos, diagramas de flujo y programas.
México, D.F.: Alfaomega.

• Guerrero, F. (s.f.). mailxmail.com. Recuperado el 15 de 8 de 2010, de
https://web.archive.org/web/20221129015722/http://www.mailxmail.com/curso-introduccion-
lenguaje-c

• Hernández, María Lourdes (2010), Diseño Estructurado de Algoritmos, Diagramas de Flujos y
Pseudocódigos, Documento recopilado de la Universidad de Teuxtepe.

• Joyanes, L., & Zohanero, I. (2005). Programación en C. Metodología, algoritmos y estructuras
de datos. España: Mc Graw Hill.

• Kernighan, B., & Ritchie, D. (1991). El lenguaje de programción C. México: Prentice-Hall
Hispanoamericana.

• López, L. (2005). Programación estructurada en lenguaje C. México: Alfaomega.

• Reyes, A., & Cruz, D. (2009). Notas de clase: Introducción a la programación. México, D.F.:
UACM.

• Villela, H. T. (20 de agosto de 2010). Manual de C. Consultado el 25 de marzo de 2020 en:
http://diarium.usal.es/mlperez/files/2012/06/lenguajec-unix-gcc.pdf

• Viso, E., & Pelaez, C. (2007). Introducción a las ciencias de la computación con Java. México,
D.F.: La prensa de ciencias, Facultad de Ciencias, UNAM.

https://web.archive.org/web/20221129015722/http:/www.mailxmail.com/curso-introduccion-lenguaje-c
https://web.archive.org/web/20221129015722/http:/www.mailxmail.com/curso-introduccion-lenguaje-c
http://diarium.usal.es/mlperez/files/2012/06/lenguajec-unix-gcc.pdf

