UnADM

UNIVERSIDAD ABIERTA Y
A DISTANCIA DE MEXICO

Programa de la asignatura:

Programacion

U 3 Estructuras de control

BIOTECNOLOGIA

U 3 Programacion
Estructuras de control

indice

Presentacion de 12 UNIAAToooiiiiii et 2
PrOPOSITOS ...ttt ettt ekt R e b e ket et e nRb e e an b e e be e e nnre e e nnee e e 3
COMPELENCIA ESPECITICA ..eiieeiiie ittt 3
3.1, ESUCIUIAS SEIECHIVAS......eiiiiiiiiiiiiiii ettt 4
3.1.1. Estructura selectiva SIMPIe (i)oooiiiiii e 4
3.1.2. Estructura selectiva doble (if-EISE)ouoiiiiiiiii 9
3.1.3. Estructura selectiva multiple (SWItCh-CaSE)cccviiiiiie i 11
I S | (0 Ty LU= S =T L= U117 N 15
3.2.1. Estructura Mientras (WHiIl€)uuuuuereieieieieieieieieteieieeeiesereeeiebeasbsesreeeenrnrerernrsenrnrnenenrnne 17
3.2.2. Estructura Desde-mientras (fOr)uuuuueueirurieiiieieieieieisisieiereieieiereerereee ... 20
3.2.3. Estructura Hacer-mientras (do-Whil€)...............uuuuuirmumriiiiiiiiiiiieiiieisieieieierereiererensenennnnn. 23
3.3, ESIruCturas ANIATAScoovviiiiiiieeeit ettt 29
R N (=T | [0 1 O PP R PRSP 31
3.4.1. DefiniCiONn y tiP0S A€ AITEQI0OSeiiiiiiiieei ittt 34
3.4.2. Declaracion € iNiCIAlIZACIONccoiiiiiiiiii e 36
3.4.3. Acceso a los elementos de UN @rregloueveeiiiiieeiiiie e 39
F Yo 1)V o =T [T PP PP PO PR 40
AULOITETIEXINES ...ttt e e st e e e s 40
Cierre de 18 UNIHATveeieiie ettt e 41
Para SADEI MAS ..ottt 41
FUENTES 08 CONSUITAeeiieiiii ettt e 42

Universidad Abierta y a Distancia de México

U 3 Programacion
Estructuras de control

Presentacion de la unidad

En la primer unidad, mediante el mundo de la ardilla, aprendiste que cualquier algoritmo puede ser
escrito utilizando Unicamente tres tipos de instrucciones, conocidas como estructuras de control:
secuenciales (cuando se ejecutan una tras otra), selectivas (cuando se ejecutan dependiendo de una
condicion) y repetitivas (que se ejecutan varias veces en funcion de una condicion); su objetivo es
controlar el flujo de ejecucion de un programa, es decir, el orden en que se ejecutan las instrucciones.

Considerando que en la unidad anterior disefiaste algoritmos secuenciales y los codificaste en
lenguaje C, para obtener el programa deseado que diera solucion al problema en cuestién, podemos
decir que solamente te falta saber cémo funcionan y cémo se codifican en lenguaje C las otras dos
estructuras para poder disefar algoritmos estructurados. Asi que esto es justamente el tema de esta
unidad, aqui estudiarads con mas detalle los tipos y funcionamiento de las estructuras selectivas y
repetitivas, introducidas en la unidad 1.

Para su mejor comprensién, esta unidad esta dividida en dos partes: en la primera revisaras algunos
problemas donde la solucion implica tener que elegir el camino que se debe seguir para llegar al
resultado deseado, los cuales se solucionan utilizando estructuras selectivas, por lo cual se analizaras
a mayor profundidad el significado (semantica) de cada estructura y veras la forma de codificarla
(sintaxis) en lenguaje C. La segunda parte esta dedicada a las estructuras repetitivas, para las cuales
se sigue la misma estrategia, veras como se pueden solucionar problemas utilizando este tipo de
estructuras y también analizaras su semantica y aprenderas su sintaxis en lenguaje C. De esta
manera, al finalizar la unidad podras construir programas que incluyan cualquier tipo de estructura de
control, asi como poder trabajar con variables tipo arreglo.

Universidad Abierta y a Distancia de México 2

U 3 Programacion
Estructuras de control y

Propdsitos

En esta Unidad:

e Construiras expresiones booleanas para modelar situaciones reales.

e Disefiaras algoritmos para resolver problemas que impliquen la toma de decisiones, utilizando
estructuras selectivas.

o Disefaras algoritmos para resolver problemas que realicen una misma tarea varias veces usando
estructuras repetitivas.

e Caodificaras en lenguaje C algoritmos estructurados.

Competencia especifica

SABER)

Utilizar estructuras de control selectivas y repetitivas para resolver
problemas simples a través del desarrollo de programas en lenguaje C.

Universidad Abierta y a Distancia de México 3

U 3 Programacion
Estructuras de control

3.1. Estructuras selectivas

Para disefiar programas capaces de tomar decisiones se requiere de las estructuras de control
selectivas, también llamadas condicionales. Estas llevan a cabo su funcién (controlar el flujo del
programa) mediante una condicién que se representa utilizando expresiones booleanas, de tal manera
gue cuando la condicién se cumple (es verdadera) se ejecuta un conjunto de instrucciones definidas
para este caso y, dependiendo del tipo de estructura, es posible que se ejecute otro conjunto de
instrucciones distinto para el caso contrario (cuando la condicién es falsa); e incluso, es posible definir
diferentes conjuntos de instrucciones para valores distintos que pudiera tomar una variable. Es asi que
dependiendo de su estructura se han definido tres tipos: simples, dobles y mdltiples.

Para el estudio de cada estructura selectiva, a continuacién, se dedican tres subsecciones, una para
cada una, en las cuales entenderas como funcionan y la forman en que se codifican en lenguaje C.

3.1.1.Estructura selectiva simple (if)

La estructura de decision simple, como su nombre lo indica, permite decidir entre ejecutar o no un
bloque de acciones; en pseudocédigo se propuso la palabra reservada Si para su representacion y en
lenguaje C esta estructura se codifica mediante la sentencia de control if, tal como se muestra en la
siguiente tabla.

Pseudocdédigo Diagrama de Flujo Cédigo en C
if(<condicion>)

Si <condicion> ; =

entonces ~ <instrucciones>

<instrucciones> mstrucciones

Fin Si

Tabla 3.1: Representaciones de la estructura condicional simple

La <condicién> puede ser cualquier expresion booleana y las <instrucciones>, llamadas cuerpo del Si
(if), bien puede ser una sola instruccién o un bloque de instrucciones.

La manera en la que se ejecuta una instruccion Si (if) es la siguiente: se evalla la condicién que

aparece entre paréntesis y si es verdadera (tiene un valor diferente de cero) entonces se ejecutan las
instrucciones del cuerpo del Si (if), en caso de no serlo no se ejecuta y continta el flujo de ejecucion.

Universidad Abierta y a Distancia de México 4

U 3 Programacion
Estructuras de control

NOTA: En lenguaje C, cuando el cuerpo de una estructura tiene mas de una instruccién éstas deben ir
encerradas entre llaves.

Para ilustrar las representaciones y el funcionamiento de la estructura selectiva simple se presenta el
siguiente problema, con el algoritmo en pseudocdédigo y programa en lenguaje C.

Problema 3.1: Se requiere un programa que lea un valor entre 0 y 360 y determine el tipo de angulo,
considerando que:

¢ Angulo agudo: Mayor a cero y menor de 90 grados

e Angulo reto: Es igual a 90 grados

¢ Angulo obtuso: Es mayor que 90 pero menor a 180 grados
¢ Angulo llano: Es igual a 180 grados

¢ Angulo concavo: Es mayor a 180 pero menor a 360 grados

El andlisis del problema se resume en la siguiente tabla.

Anélisis del problema

Salida: Método:

Mensaje 1: “Agudo” Realizar comparaciones
Datos de entada:

Mensaje 2: “Recto” utilizando la estructura de

angulo

Mensaje 3: “Obtuso” seleccion simple para

Mensaje 4: “Llano” determinar el tipo de &ngulo,

Mensaje 5: “Concavo” [se requiere una por cada tipo

Tabla 3.2: Analisis del problema 3.1

Lo primero que se requiere es leer el valor del angulo, posteriormente, verificar de qué tipo es para
imprimir el mensaje indicado. A continuacién, se muestra el algoritmo, en pseudocddigo:

Universidad Abierta y a Distancia de México 5

U 3 Programacion
Estructuras de control

Inicio
Imprimir "Ingrese la medida del angulo (grados): "
Leer angulo

Si angulo<0 OR angulo<360 entonces :
Imprimir “No tiene clasificacion" :

Si angulo>0 AND angulo<90 entonces :
Imprimir "El &ngulo es agudo” i

1 Si angulo=90 entonces :
E Imprimir "El angulo es recto" |

Si angulo>90 AND angulo<180 entonces
Imprimir “El angulo es obtuso”

1
i Si angulo =180 entonces
L

Imprimir "El &ngulo es llano"

i Si angulo>180 AND angulo<360 entonces i
i Imprimir “El angulo es concavo" !

Algoritmo 3.1.a: Tipo de angulo - pseudocédigo

Observa que, para hacer mas legible el algoritmo en pseudocdédigo, se han dejado sangrias para
indicar qué instrucciones forman el cuerpo de cada una de las estructuras Siy se han encerrado con
un rectangulo, esto se adoptara para cualquier bloque de instrucciones que corresponda al cuerpo de
una estructura.

Continuemos con la codificacién. Observa que el cuerpo de cada una de las estructuras consta de una
instruccion por lo tanto no es necesario encerrarla entre llaves {}.

Universidad Abierta y a Distancia de México 6

U 3 Programacion
Estructuras de control

recto, obtuso, llane
o concave) */

#include<stdio.h>

#include<stdlib.h>

printf (™ ngrese la medida del angulo (grados): ");
scanf ("%d", fangulo);
if (angulo<=0 || angulo>=3&0})

printf ("\n NHo tiene clasificacion™);

if (angulo>0 &&angulo<30)

printf ("\n El1 angulo &= agudo™);

if (angulo==30})
printf ("\n E1 angulo e= recto"):

if (angulo>80 s&angulo<l1Z0)
printf ("\nElangulo =2 obtuso"):

if (angulo ==1E80)
printf ("\n El angulo e= llano"):

if (angulo>1230 &&angulo<360)
printf ("\nElangulo &= concavo™);

printf ("\n\n\t"™):
sy=stem ("pause™):

FrameT
runcion

Fu

in as 1

Programa 3.1: tipoAngulo.c

Video 3.1: Consulta el video de desarrollo de la solucién anterior,
también podras encontrar el programa fuente ¢ en el material
adicional de la unidad.

Universidad Abierta y a Distancia de México

U 3 Programacion
Estructuras de control

et C:\Documents and SettingsWsuario\Mis documentos\IP\IP72\Practicas\practicab\angulos...
Este programa determina de gque tipo es el angulo dado. ﬂ
Ingrese la medida del angulo {(grados>: 120
El1 angulo es obhtuso
Presione una tecla para continuar . . .
<] | 2l
Figura 3.1: Ejecucion del programa tipoAngulo.c
{ * En la presente unidad, se sugiere el uso de herramientas (applets) en
\ linea que podras consultar en el sitio: http://www.pcq.ull.es/edapplets/en

[“ A‘ / donde existen distintas actividades para el estudio de las estructuras de

control, asi como para algunos otros temas de programacion.

Se sugiere consultes el video que contiene las bases de las estructuras de
control como los que podrias aplicar a lo largo de la unidad:
https://www.youtube.com/watch?v=30K6SIIMnGk y
https://www.youtube.com/watch?v=txJnxfs10wk

A lo largo del texto se haran algunas sugerencias de informacion
adicional que corresponde a la seccion Para saber mas, pero serén
insertadas a lo largo de la unidad para complementar el contenido.

Universidad Abierta y a Distancia de México 8

http://www.pcg.ull.es/edapplets/
https://www.youtube.com/watch?v=3oK6SIIMnGk
https://www.youtube.com/watch?v=txJnxfs10wk

U 3 Programacion
Estructuras de control

3.1.2. Estructura selectiva doble (if-else)

Las estructuras selectivas dobles nos permiten elegir alguna de dos posibles acciones a realizar
dependiendo de la condicidn. En pseudocdédigo se propone usar las palabras reservadas Si-Sinoy en C
se codifican mediante la sentencia i f-e1se, tal como se muestra en la siguiente tabla.

Pseudocédigo Diagrama de Flujo Lenguaje C

entonces "

<instruccionesV>
- | instrucciones F |

sino : 2
instrucciones \

<instruccionesF> |
Fin Si-Sino

Si (<condicién>)

Tabla 3.3: Representaciones de la estructura condicional doble

Al igual que en la estructura selectiva simple, la <condicion> representa una expresion booleana vy, las
<instruccionesV> y <instruccionesF> puede ser una o varias, a las primeras se les llama cuerpo del Si
(if) y las segundas son el cuerpo del Sino (e1se).

Esta estructura de control ejecuta s6lo uno de los dos cuerpos de instrucciones: cuando la condicion es
verdadera se ejecutan las <instrucciuonesV>y en caso contrario se ejecutan las <instruccionesF>.

En el desarrollo del siguiente problema se ejemplifican las representaciones y el funcionamiento de esta
estructura.

Problema 3.2: Se requiere un programa que solicite el afio de nacimiento de un votante, determine si
su edad es valida para poder emitir su voto, si cumple con la condicién y su edad es mayor o igual a los
70 afos indicar al que pase a una casilla especial, en caso contrario indicar solo un mensaje de
bienvenida.

El algoritmo en pseudocddigo es el siguiente:
Inicio
Imprimir “Afo de nacimiento: ”

Leer nac
edad = anio_actual — nac

Universidad Abierta y a Distancia de México 9

U 3 Programacion
Estructuras de control

si (edad>=18) entonces
si (edad>=70) entonces
imprimir “Pase a casilla especial”

si no
imprimir “Bienvenido”
fin si_no
sino
imprimir “Edad no valida para votar”
finsi_no

Fin
Algoritmo 3.2.a: Valida voto

Para la codificacion en lenguaje C se debe notar que el cuerpo del Si (if) tiene un bloque de mas
instrucciones, por lo que deberéan ir encerradas entre llaves {}.

#include<stdio.h>
#include<stdlib.h>

/*Mensaje d

printf (™ puede wotar.™);
printf ("\n ngrese su fecha de nacimiento: ");
gecanf ("%d", &nac):

edad=2015-nac;
if (edad>=18){
if (edad>=T0){
printf ("wn Fase a la casilla especial™):

telsed{
printf ("% Bienvenido pase z emitir =su vota"):
}
telse{
printf ("wn Edad no valida para wvotar"):
H
printf ("\n\n\t"):

system ("pause");

} /*Fin de 1 uncicdn Principal®*/

Programa 3.2: validavoto.c

En la siguiente figura se muestra la ejecucion de este programa 3.2

Universidad Abierta y a Distancia de México 10

Programacion

Estructuras de control

7| C:\Users\christian\Documents\programas en cok\validavoto.exe EI@

IEste programa determina =i el uwsuwario puede votar. |

Ingrese su fecha de nacimiento: 1982
Bienvenido pase a emitir su voto

Presione una tecla para continuwar . . .

4| [l | [

Figura 3.2: Ejecucion del programa validavoto.c

Video 3.2: Consulta el video de desarrollo de la solucién anterior,
también podras encontrar el programa fuente ¢ en el material
adicional de la unidad.

3.1.3. Estructura selectiva multiple (switch-case)

Las estructuras selectivas multiples permiten escoger uno de varios caminos posibles. Para la estructura
condicional multiple se proponen las palabras clave Seleccionar-caso en pseudocddigo, misma que se
implementa en lenguaje C utilizando las palabras reservadas switch-case. Esta secuencia se utiliza
cuando existen multiples posibilidades para la evaluacién de una expresion matematica (generalmente
una variable), pues de acuerdo con el valor que tome la expresion sera el conjunto de instrucciones que
se ejecute.

Pseudocdédigo Lenguaje
switch (<expresioén>)

Casos para<expresion> {

< >
Cgso Vaprl case<valorl>:
<instruccionesCasol> . .
<instruccionesl>;
caso<valor2>:
)) break;
<instruccionesCaso2>
case<valor2>:

<instrucciones2>;
otros casos: break;

<instruccionesOtros> default:

Fin_Casos <instruccionesOtras>

}
Diagrama de Flujo

Universidad Abierta y a Distancia de México 11

U 3 Programacion
Estructuras de control

e

Valort v Valor2 v . l Otos nlorezl
| <instuccionesl> l | Intrucciones2 I |] | Otras Acciones]
)

e

Tabla 3.4: Representaciones de la estructura condicional mdltiple

En este caso la <expresion> no es booleana sino aritmética y de tipo entero, asi cada caso corresponde
a un valor que puede resultar de su evaluacién. De esta forma, el flujo de control que sigue la ejecucion
de una instruccion Seleccionar-casos (switch-case) es el siguiente: se evalla la <expresion> vy si el
valor corresponde al valor de un caso, es decir a un <valori>, se ejecuta el bloque de <instrucciones;>
hasta encontrar el final de la instruccion, que en el caso de C esta representado por la palabra reservada
break, terminando ahi la ejecucion de la instruccion. Cuando el valor no corresponde a ninguin caso se
ejecuta el bloque de instrucciones correspondiente a otros casos (default). El conjunto de todos los
casos, incluyendo el default, conforman el cuerpo de la estructura Seleccionar-casos (switch-

case).

Problema 3.3: Se requiere un programa que dada una calificacion con numero despliegue un mensaje,
de acuerdo con la siguiente informacion:

0-6: Reprobado

7. Suficiente, Aprobado

8: Bien, Aprobado

9: Notable, Aprobado

10: Sobresaliente, Aprobado

Universidad Abierta y a Distancia de México 12

U 3 Programacion
Estructuras de control

En este caso es conveniente utilizar una estructura selectiva multiple, en donde la expresién que se
evalle sea la calificacion del estudiante y se defina un caso por cada una de las calificaciones posibles.
Es claro, que la entrada Unicamente es la calificacion y la salida es el mensaje correspondiente. De lo
anterior el algoritmo en pseudocddigo y diagrama de flujo quedaria de la siguiente forma.

Inicio
Imprimir “ Inserte una calificacion: "
Leer nota Seleccionar (nota)
caso 0: caso 1: caso2: caso 3: caso 4: caso 5: caso 6:
Imprimir “Reprobado”
caso 7:
Imprimir "Suficiente, Aprobado”
caso 8:
Imprimir "Bien, Aprobado"
caso 9:
Imprimir “Notable, Aprobado”
caso 10:
Imprimir “Sobresaliente, Aprobado”
otros casos:
Imprimir "Esa nota es incorrecta" Fin_Casos
Fin

Algoritmo 3.3.a: Conversion de calificacion numérica a letra - pseudocd6digo

Es importante sefialar que, a diferencia de las estructuras anteriores, el cuerpo de una estructura
selectiva multiple siempre debe ir encerrado entre llaves {} cuando se codifica en C, mas no asi las
instrucciones que se definen para cada caso, ya que estas se acotan por las palabra reservadas case y
break, por tal motivo no debes olvidar escribir el break al final de cada caso de lo contrario también se
ejecutaran las instrucciones de los casos que aparezcan después.

Universidad Abierta y a Distancia de México 13

U 3 Programacion
Estructuras de control

FS* Programa: calificacion.c
* Descripcidn: Dads uns calificacion con nimero desplisgs un mMeEnsajs
* 0,1,2,3,4,5,& - Heprobado
* 7 - Buficiente, Aprobado
* f - Bien, Aprobado
* 89 - Notable, Aprobado
* 10 Sobresalisnte, Aprobado*
#include<stdio.h>
#include<stdlib.h>
main ()} { /*Funcicon principal*/
int nota; /*Declarscidn d= varishles#*
F*Mznsaje de bienvenids *

printf ("\nEl siguiente programa lee una calificacion con nimero, ‘\n
determina gue tipo de calificacion es'n"):

F*Datos de entrada*/

printf ("‘“nInserte una calificacion numérica: "); scanf ("3d", anota);
S*Comparacion®s

switch (nota) {
case 0! case 1l: case Z: case 3:!: case 4: case S5: case 6!
printf ("\n\n\t\"Reprobadol™") ;
break:
case T:
printf {("\ni\n\ty"Suficiente, Aprobadol™"};
break;
case Z:
printf ("\n\n\t\"Bien, Aprobadoh\™™):;
break:
case 9:
printf ("\ni\n\t\"Hotable, Aprobado’™"):
break:;
case 10:
printf ("\n\n\th"Sobresaliente, Aprobadol""):
break:;
defanlt:
printf ("\n\n\t\"E=za nota ez incorrecta\""m):
H
printf ("\ni\nh\tit"):
system [("pause");

Programa 3.3: calificacion.c

Video 3.3: Consulta el video de desarrollo de la solucién anterior,
también podras encontrar el programa fuente ¢ en el material
adicional de la unidad.

Universidad Abierta y a Distancia de México 14

U 3 Programacion
Estructuras de control

En la siguiente figura se muestra la ejecucion de este programa con el valor de entrada igual a 8.

¢t C:\Documents and Settings\UsuarioMis documentos\IPA\IP72\Practicas\prac... X

-~
El siguiente programa lee una calificacion con n-mero. :J
determina que tipo de calificacion es

Inserte una calificacion numUrica: 8

"Bien,. Aprobhado"

Presione una tecla para continuar . . . _I_'_|
4 | 4

Figura 3.3: Ejecucion del programa calificacion.c

A lo largo de esta seccion has estudiado los tres tipos de estructuras selectivas y por medio de los ejemplos
presentados te has dado cuenta de la importancia y utilidad de estas estructuras, sin ellas seria imposible
construir programas que implicaran la toma de decisiones. Sin embargo, todavia existen problemas
gue requieren de otro tipo de estructuras que permitan repetir una tarea un nimero determinado de
veces, la siguiente seccion esta dedicada a este tema.

3.2. Estructuras repetitivas

En la mayor parte del disefio o implementacién de las soluciones que se plantea a problemas
especificos nos encontramos con instrucciones que deben ejecutarse un nimero determinado de
veces, si hacemos un analisis mas profundo de estas situaciones, en la mayoria de las ocasiones nos
encontramos que las instrucciones son las mismas, pero que los datos varian, esto se hace posible
utilizando las estructuras repetitivas, generalmente llamadas ciclos.

Existen varias estructuras de repeticion implementadas por los diferentes lenguajes de programacion,
todas con la misma idea: repetir un conjunto de instrucciones, llamadas cuerpo del ciclo, dependiendo
de condicion. En la mayoria de los ciclos el cuerpo se repite siempre y cuando la condicién se cumpla,
sin embargo, también existe una estructura repetitiva que se repite en tanto que no se cumple la
condicion. En esta seccién sélo nos enfocaremos en las primeras que son las que estan definidas en el
lenguaje C y en la mayoria de los lenguajes estructurados y orientados a objetos actuales. Cabe
mencionar que a cada una de las veces que se repite el ciclo se le conoce como iteracion.

Cuando se utilizan ciclos dentro de un programa, te puedes enfrentar a dos posibles situaciones:

e Que conozcas desde el disefio cuantas veces deben repetirse las instrucciones (repeticion
definida),

Universidad Abierta y a Distancia de México 15

U 3 Programacion
Estructuras de control

e Que el nimero de veces que se deban repetir las instrucciones dependa de un valor que se
conoce hasta el momento de la ejecucién del ciclo (repeticion indefinida).

En el primer caso se necesitara una variable que funja como un contador, en la cual se registre el
namero de iteraciones que se vayan ejecutando. En cambio, en las repeticiones indefinidas
generalmente se controlan mediante interruptores o banderas, o bien, con valores centinela.

Con los anterior puedes darte cuenta de que para las estructuras de control repetitivas es muy
importante el uso de variables auxiliares y que por la frecuencia con la que se utilizan dentro de un
algoritmo y por la funcién que realizan dentro del mismo toman un nombre especial: contadores,
acumuladores e interruptores.

Un contador es una variable cominmente de tipo entero destinada a almacenar un valor que se ir&
incrementando o decrementando en una cantidad constante. Se suelen utilizar mucho en procesos
repetitivos definidos, para contabilizar el nUmero de veces que se repite un conjunto de acciones o
eventos, es decir en los cuerpos de las instrucciones repetitivas.

Sobre una variable contadora se realizan dos operaciones basicas: inicializacién e incremento o
decremento, seguin sea el caso. Todo contador se debe inicializar con un valor inicial (0, 1...)
contador = Valor_Inicial

Cada vez que aparezca el evento a contar se ha de incrementar o decrementar en una cantidad fija (I,
D respectivamente) el valor del contador.
contador = contador+ [;

contador = contador- D;

Los contadores mas utilizados tienen incrementos o decrementos de uno en uno, es por ello que la
simplificaciéon de dichas expresiones es:

Expresion Expresién Simplificada
en lenguaje C
contador=contador +1; contador++
contador=contador -1; contador--

Es importante sefialar que en lenguaje C hay tres diferentes estructuras repetitivas: while (Mientras-
hacer), for (Desde-mientras) y do-whi le (Hacer-mientras), con todas ellas es posible modelar ciclos
definidos o indefinidos, pues las tres son equivalentes, es decir, cualquiera de ellas se puede expresar
en términos de las otras.

Universidad Abierta y a Distancia de México 16

U 3 Programacion
Estructuras de control

3.2.1.Estructura Mientras (while)

La estructura repetitiva Mientras, codificada en lenguaje C con la palabra reservada while, controla
las repeticiones a partir de una condicion que se evalla al inicio del ciclo, de esta manera en cada
iteracion primero se evaluara la condicion y mientras resulte verdadera se repetird el ciclo. En la
siguiente tabla se muestran las representaciones del ciclo Mientras (while).

Pseudocdédigo Diagrama de Flujo Lenguaje C

Mientras <condicion>hacer while (<condicion>)
F .
<instrucciones> w <instrucciones>;

Fin mientras instrucciones
|

——

Tabla 3.5: Representaciones de la estructura repetitiva Mientras (while)

La manera en la que se ejecuta una instruccibn Mientras (while) es la siguiente: las
<instrucciones> del cuerpo del ciclo se ejecutan mientras la <condicién> es verdadera, cuando
esto no se cumple se termina el ciclo; de esta forma, si la primera vez que se evalla la condicién esta
es falsa, el cuerpo del ciclo no se ejecuta ni una sola vez.

Para ejemplificar cémo se construye un ciclo indefinido utilizando un valor centinela, se propone el
siguiente problema.

Problema 3.4: Se requiere un programa que calcule el promedio de temperaturas que registra una
ciudad, las temperaturas se introduciran en grados Fahrenheit °F y no se conoce de antemano el nUmero
de temperaturas que el usuario introducira.

Para resolver el problema planteado se podria pedir el nUmero de temperaturas que se desean
registrar para calcular el promedio, pero esto equivale a una estructura de repeticion definida, si
decidiéramos dejar abierto este dato hasta el momento de la ejecucion del programa, tendriamos que
construir una condicién que haga que el ciclo se repita mientras que el usuario desea ingresar
temperaturas. Pero ¢,cémo se puede resolver esto? En casos como este se propone utilizar un valor
centinela que indique el fin de la captura de datos. Claramente el valor centinela debe ser
seleccionado de tal forma que no se confunda con algun valor de entrada aceptable, por ejemplo
podriamos considerar que dado que existe un limite minimo de temperaturas en grados Fahrenheit, a
saber -460°F, el valor centinela seria cualquier nimero inferior a éste, es claro que no existe una

Universidad Abierta y a Distancia de México 17

U 3 Programacion
Estructuras de control

temperatura mas baja, sin embargo el limite maximo es dificil de definir ya que en forma experimental
se obtienen en los laboratorios temperaturas de miles de grados, mientras que en una explosiéon
atomica se alcanzan temperaturas de millones de grados. Se supone que la temperatura en el Sol
alcanza los mil millones de grados (Pérez, 1992, pag. 325).

Para calcular el promedio, debemos realizar la suma de todas las temperaturas y dividirlas entre el
namero total de temperaturas (tempFl+tempF2+ ...,+ tempFn) que se hayan leido, digamos n. Lo
anterior se expresa con la siguiente férmula.

Y tempF;
proml « ————

Asi que en este caso se usara un ciclo que vaya leyendo una a una las temperaturas (almacenandolas
en la variable) y acumulando la suma en la variable, estas acciones se repetiran hasta que el usuario
introduzca un nimero menor a -460. De esta manera, la condicién de término es: = —460; por lo que
antes de iniciar el ciclo se debe pedir la primera temperatura, para que se compare con la condiciéon y
si es mayor a -460 se acumule en la suma. Ademas, se utilizara un contador para registrar el nimero
de temperaturas que se lean. Finalmente, cuando se termina el ciclo se divide el resultado de la suma
de las temperaturas entre el valor del contador. Lo anterior se expresa en el siguiente pseudocodigo.

Inicio

c«—0, sumaF<0

Imprimir "Ingrese la primer temperatura registrada en grados Fahrenheit:" Leer tempF
Mientras (tempF=-460) c—c+1 sumaF=sumaF+tempF

Imprimir "Ingrese la siguiente temperatura en grados Fahrenheit (un nUmero mayor a -
460) para calcular el promedio”

Leer tempF Fin Mientras

promF<«sumaF/c

Imprimir “El promedio de las temperaturas es” promF

Fin

Algoritmo 3.4.a: Promedio temperaturas - pseudocédigo

El siguiente paso es la codificacion, para la cual se determiné utilizar una variable para representar el
valor centinela que controla el ciclo.

Universidad Abierta y a Distancia de México 18

U 3 Programacion
Estructuras de control

f I'SMmd »
o

o

[l

1

[T

HoH

o
=]

Des]
"y
#include<stdio.h>
#include<stdlib.h>

#define centinela -460

main(}{ /* Funcidn principal #*/
float tempF,promF, sumaF=0; /*Dsclsracidn de scumuladorses v contadorss#*/
int c=0;
F+ Lecto de la primera temperatura *

printf ("Pr
printf ("‘n Ingrese la primer temperatura registrada:"):
scanf ("%L",&tempF);

P el e g oz y
7* Codificacidn d=l cicleo */

de temperaturas en grados Fahrenheitin\n'n"):

* L& registra la temperatura gue s= leyo *
c=c+ 1;
* L= acumulala temperatura en la suma *

A* S2 1lee 1la siguiente temperatura */

printf ("\n'nIngrese la siguiente temperatura
(2i desea terminar ingrese un numero menor a %d): ", centinela):

sgcanf ("%L",&tempF);

promF=sumaF/c;
printf ("\nPromedio de temperaturas Celsius=%.2f\n", promF):

system ("pause"):

Programa 3.4: promTemp.c

Video 3.4: Consulta el video de desarrollo de la solucién anterior,
también podras encontrar el programa fuente ¢ en el material
adicional de la unidad.

Por dltimo, en la siguiente figura se muestra la ejecucion del programa.

Universidad Abierta y a Distancia de México 19

Programacion

Estructuras de control

-
] C\Users\LlI|an\Documents\RespaldoZoct\lP\IPQZ\IP101\promTemp exe = | =]

Programa que calcula e1 promedlo de temperaturas en grados Fahrenheit

1 |

Ingrese la primer temperatura registrada: 75

Ingresg la siguiente temperatura (si desea terminar ingrese un numeroc menor a —4
68> : 8

Ingrese la siguiente temperatura (si desea terminar ingrese un numero menor a —4
68>: 79

Ingrese la siguiente temperatura (si desea terminar ingrese un numero menor a —4
68>: -—-2000

Promedio de temperaturas Celsius=77.33

Presione una tecla para continuar . . . _

h ==

Figura 3.4: Ejecucion del programa promTemp.c

3.2.2.Estructura Desde-mientras (for)

El ciclo Desde-mientras, en inglés y lenguaje C for, evaluara una condicién y mientras ésta sea
verdadera se ejecutara el conjunto de instrucciones definidas en el cuerpo de la estructura,
generalmente las repeticiones se controlan por un contador, ya que como parte de su sintaxis tiene la
opcion de inicializar una variable (el contador) e incrementarlo o decrementarlo. Este tipo de estructura
es conveniente utilizarla cuando se conoce de antemano el nimero de veces que se debe repetir el
ciclo (ciclos definidos). Sus representaciones se muestran en la siguiente tabla.

Pseudocdédigo Diagrama de Flujo

Desde

<inicializacion>Mientra

s<condicién>,

<incr/decr>
<Instrucciones>

Fin desde

Lenguaje C
for (<inicializacién>;<condicién>; <inc/dec>)

<instrucciones>

Tabla 3.6: Representaciones de la estructura repetitiva Desde-mientras (for)

Universidad Abierta y a Distancia de México 20

U 3 Programacion
Estructuras de control

En este caso, primero se realiza la <inicializacidon> que corresponde a la asignacion de un valor inicial
de una variable (el contador), posteriormente se evalla la <condicién> si es verdadera se ejecutan las
<instrucciones> del cuerpo del ciclo y, posteriormente, se incrementa o decrementa el contador, segun
sea el caso, para después volver a repetir el ciclo, excepto por la <inicializacion> que soélo se ejecuta
unavez.

Para ejemplificar las representaciones, codificacion y funcionamiento de esta estructura se presenta el
siguiente problema desarrollado.

Problema 3.5: Se requiere un programa que calcule el total de la némina de los trabajadores de una
empresa.

El problema es similar al que se presentd en la seccién anterior, se debe leer el pago de cada
trabajador y realizar la suma de cada uno de éstos, para lo cual se puede utilizar un acumulador. La
diferencia es que en este caso no se utilizara un valor centinela para terminar la lectura de los pagos,
pues se preguntara al usuario al inicio del programa cuantos trabajadores hay, asi el nUmero de
iteraciones quedara determinado antes de iniciar el ciclo. De lo anterior tenemos que si el nimero de
empleados es n entonces el ciclo debe repetirse n-veces, para lo cual se utilizara un contador ¢ que
debe tomar los valores 1,2,..., n, asi que el ciclo debe repetirse siempre que ¢ < n. En cuanto a la
suma de los pagos, se utilizara un acumulador, al cual llamaremos nom, que se inicializara en cero
dado que se trata de una suma. Observa la solucion del problema.

Inicio
Imprimir "Ingrese el total de empleados: " Leer n
Desde c=1, nom=0, Mientras (c<=n), c=c+1
Imprimir “Ingresa el salario del trabajador”, c
Leer sal nom=nom-+sal
Fin desde
Imprimir “La ndmina a pagar es en total $”, nom
Fin

Algoritmo 3.5.a: Némina - pseudocddigo

Universidad Abierta y a Distancia de México 21

U 3 Programacion
Estructuras de control

Por lo tanto, la salida del algoritmo es: “La némina a pagar es $45”. La codificacion seria la siguiente.

e} R p—— - -

* Programa noming.c

™ g - =7 T3 T3 m e N p—— | - i L |
Descripclor calciila 14 Noming 484 pagar Q& n Crabda]Jadores
*

Srdirectivas de preprocesador*

$include<stcdio.h>
$include<stdlib.h>

main ()}{ /*Funcion Principal#*/

int n,c;/* Declarscidn de las varisbles *

float nom, sal;

S* Lectura del nimere d= empleados */

printf ("Calculo de la Nomina‘in'n "):

printf ("Ingrese el total de empleados: ") ;

gcanft (":d4d",&n);

F*Ciclo definido de 1 hasta =1 numero de empleados ilngresados®/

for (nom=0,c=l;c<=n;c=c+l) {
printf ("‘\nIngresa el =alario del trabajador %d: ", c);:
gcanft ("FL",&=zal);
SrAcumplador de= saldrios*/
nom=nom+sal;
H
printf("“n La nomina a pagar 3 5&.2f", nom):
H
Programa 3.5: nomina.c

Video 3.5: Consulta el video de desarrollo de la solucién anterior, también
podras encontrar el programa fuente c en el material adicional de la unidad.

En la siguiente figura se muestra la ejecucion del programa.

Universidad Abierta y a Distancia de México 22

U 3 Programacion
Estructuras de control

¥ ' C:\Users\Lilian\Documents\Respaldo2oct\IP\IP92\IP101\nomina.exe = l =l

Calculo de la Nomina -

Ingrese el total de empleados: 3 L4
Ingresa el salario del trabajador 1: 18

Ingresa el salario del trabajador 2: 15

Ingresa el salario del trabajador 3: 20

La nomina a pagar es $45.00

Presione una tecla para continuar . . . _

Figura 3.5: Ejecucion del programa nomina.c

3.2.3.Estructura Hacer-mientras (do-while)

A diferencia de las estructuras repetitivas anteriores, en las cuales las condiciones se evaltan al principio
del ciclo, por lo que las instrucciones que se repiten se ejecuten de 0 hasta N veces, en la estructura
Hacer-mientras (do-while) la evaluacién se lleva acabo al final, esto implica que el conjunto de
instrucciones que se repite se ejecuta al menos una vez.

Pseudocddigo Diagrama de Flujo Lenguaje C
BN
Hacer v o
<instrucciones> mstrucciones instrucciones>;

while (<condicidén>) ;

Mientras <condicion>Fin

Tabla 3.7: Representaciones de la estructura repetitiva Hacer-mientras (do-while)

Universidad Abierta y a Distancia de México 23

U 3 Programacion
Estructuras de control

Observa que, en el cddigo en C, la Unica estructura de control, de todas las que hemos visto, que tiene
punto y coma después de la expresion o condicién es el do-while.

Por el funcionamiento de la estructura, el caso tipico del uso del do-while son los menuds. Para
ejemplificar lo anterior se propone el siguiente problema.

Problema 3.6: Se requiere un programa que imprima un menu con las siguientes opciones, el cual se
repita en tanto no se elige la opcion d (Salir).

Calcular la fuerza
Calcular la aceleracién
Calcular la masa

Salir

a0 oW

Ademas, dependiendo de la opcidn que elija el usuario se deberd realizar la tarea indicada utilizando la
segunda ley de Newton que dicta: “La aceleracién que un cuerpo adquiere es directamente proporcional
a la resultante de las fuerzas que actdan en é€l, y tiene la misma direccion en el sentido que en dicha
resultante”

En este caso, para resolver la parte del menu se utilizara un switch-case, en el que cada opcion del
menu corresponda a un caso, asi las instrucciones que lo forman deben ser: la lectura de los datos
correspondientes y la operacion apropiada (que se define despejando la variable en cuestion de la
formula dada). Para que el menu se repita se plantea un ciclo while que se ejecute mientras la opcién
sea distinta de 4 (Salir). De esta forma el algoritmo se presenta a continuacion en sus dos
representaciones.

Universidad Abierta y a Distancia de México 24

U 3 Programacion
Estructuras de control

Inicio
Hacer
Imprimir "Realiza Calculos trabajando la 2a. Ley de Newton"
Imprimir " "
Imprimir " a. Fuerza." Imprimir " b. Aceleracion.”
Imprimir " c. Masa." Imprimir " d. Salir."
Imprimir " Elegir una Opcion: "
Leeropc Selecciona (opc)

Caso 1:
Imprimir "Ingresa La masa:” Leer m
Imprimir “Ingresa la aceleracion:”
Leer a
f=m*a
Imprimir “Fuerza =", f

Caso 2:

Imprimir "Ingresa la fuerza:” Leer f
Imprimir “Ingresa la masa:”
Leerma=1f/m

Imprimir “Aceleracion =", a

Caso 3:
Imprimir "Ingresa la fuerza:” Leer f
Imprimir “Ingresa la aceleracion:”
Leer a
m = fla
Imprimir “Masa =", m

Caso 4:
Imprimir "Adios"

Otro:

Imprimir " Opcién invalida"
Fin_Selecciona

Algoritmo 3.6.a: Segunda ley de Newton - pseudocddigo

A continuacion, se presenta el diagrama de flujo, salvo que Unicamente se ha dejado indicado en donde
van las instrucciones de los tres primeros casos, ya definidas en el pseudocodigo.

Universidad Abierta y a Distancia de México 25

U 3 Programacion
Estructuras de control

Imprmir "Realiza los cilculos
teabajando la 2* ley de Newton™
Imprimir *
Imprimir “a. Fuerza™
Imprimir “b. Aceleracion™
Imprimir “c. Maza™

Impnmir “d. Salir”

Imprmir “Elegir vna opcién:™
L2
/ Leer onc /
gaip2 casob | casoc | casod otro
Instruccione: In:truccions: In:ztruccions:
para calcular para calcular para calcular
1z Fusrza 1z Aceleracicn 12 Mazz

| |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fopc) ;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Algoritmo 3.6.b: Segunda ley de Newton — diagrama de flujo

En el diagrama de flujo se puede observar claramente que el ciclo se ejecutara mientras el usuario no
elija la opcioén d, que corresponde a salir. Por lo que no se deja como ejercicio al lector la validacion del
algoritmo.

La codificacion del algoritmo se muestra enseguida.

/* Programa: newton.c

Descripcidén: Muestra un menlt para calcular la aceleracidn, fuerza o
masa, conforme a la segunda ley de Newton */

/*directivas de preprocUnADMor*/

#include <stdio.h>

Universidad Abierta y a Distancia de México 26

U 3 Programacion
Estructuras de control

#include <stdlib.h>
finclude <conio.h>
/*Funcién Principal*/
main ()
{
/*Declaracién de variables*/
char opc;
float f£,m,a;
/*Ciclo para repetir el menu mientras que la opcidn no sea salir*/
do
{
/*Impresidén del menu*/
system ("cls");
/*Instruccién para borrar la pantalla*/
printf ("\n Realiza Calculos trabajando la 2a. Ley de Newton");

printf ("\n -—-—-—-—-—-——-——— e ")
printf ("\n a. Fuerza. \n b. Aceleracion \n c. Masa \n d. Salir");
printf ("\n Elige una opcion: ");

/*Instruccidén que lee una variable de tipo caréacter*/
opc=getche () ;
/*Estructura de Seccidén Multiple*/
witch (opc)
{

case 'a':
printf ("\n\nIngresa la masa: ");
scanf ("$f", &m) ;
printf ("\nIngresa la aceleracion: ");
scanf ("$f", &a) ;
f=m*a;

printf ("\nLa fuerza es %.2f\n\n\t", f);
system ("pause");

break;
case 'b':
printf ("\n\nIngresa la fuerza: ");
scanf ("%Sf", &f) ;
printf ("\nIngresa la masa: ");
scanf ("%Sf", &m) ;
a=f/m;
printf ("\nLaaceleracion es %.2f\n\n\t",f);
system ("pause");
break;
case 'c':
printf ("\n\nIngresa la fuerza: ");
scanf ("%f", &f) ;
printf ("\nIngresa la aceleracidn: ");

Universidad Abierta y a Distancia de México 27

U 3 Programacion
Estructuras de control

scanf ("%f", &m) ;

m=f/a;

printf ("\nLa masa es %.2f\n\n\t",f);
system ("pause");

break;
case 'd':
printf ("\n\nAdios\n");
system ("pause");
break;
default:

printf ("\n\n Opcion Invalida");
}
/*Fin dela Seleccidén Multiple*/
}while (opc!='d'"); }/*Fin*/

Programa 3.6: newton.c

En la siguiente figura se muestra la ejecucion de una iteracion del ciclo, en la cual la opcién elegida es

la primera.
3 - . - b T i — Clhgﬁigj
¥ C\Users\Lilian\Documents\Respaldo2oct\IP\IP92\IP101\newton.exe =
e o . = -

Realiza Calculos trabajando la 2a. Ley de Newton

L »

a. Fuerza.

b. Aceleracion

c. Masa

d. Salir

Elige una opcion: a
Ingresa la masa: 45
Ingresa la aceleracion: 78
La fuerza es 3510.008

Presione una tecla para continuar . . .

Figura 3.6: Ejecucion del programa newton.c

Observa que dentro del cuerpo del ciclo se defini6 una estructura selectiva, es decir, que las
instrucciones del cuerpo de cualquier estructura compuesta, sea repetitiva o selectiva, puede contener
a otras. Uno de los casos mas utilizados es el anidamiento de los if's, de lo cual hablaremos en la

Universidad Abierta y a Distancia de México 28

U 3 Programacion
Estructuras de control

siguiente seccion. Pero antes de dar por terminada esta seccidn se propone la siguiente actividad.

3.3. Estructuras Anidadas

Las estructuras de control selectivas y repetitivas se consideran compuestas ya que se forman a partir
de otras instrucciones que son las que se ejecutaran de acuerdo con una condicién dada. Es
importante remarcar que las instrucciones que forman el cuerpo de una estructura pueden ser también
estructuras compuestas, como se demostré en la solucion del ultimo problema visto (ver algoritmo 3.6
y programa 3.6), en el cual un switch esta dentro de un while. Asi que es posible anidar cualquier
tipo de estructura, sin embargo, lo mas comun es anidar instrucciones i f, pues se utilizan cuando se
tienen varios casos, por ejemplo, si revisamos nuevamente el problema 3.1, donde se quiere
determinar el tipo de angulo, es mejor solucién utilizar i £-anidados para resolverlo porque asi no se
evaluan condiciones que, una vez que se ha definido el tipo de angulo, son innecesarias.

Para ilustrar lo anterior, a continuacion se muestra el pseudocodigo y su codificacién para la solucion
del mismo problema.

Inicio
Imprimir "Ingrese la medida del angulo (grados): "
Leer angulo

Si angulo<0 OR angulo<360 entonces
Imprimir “No tiene clasificacién"
Sino Si angulo<90 entonces
Imprimir "El &ngulo es agudo”
Sino Si angulo=90 entonces
Imprimir "El angulo es recto”

Sino Si angulo<180 entonces
Imprimir “El angulo es obtuso”

Sino Siangulo =180 entonces
Imprimir "El angulo es llano”
Sino

Imprimir “El angulo es concavo"
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin_Si-Sino
Fin

Algoritmo 3.7: Tipo de angulo (versién 2)- pseudocédigo (Fuente: elaboracion propia)

Universidad Abierta y a Distancia de México 29

U 3 Programacion
Estructuras de control

Si realizas la prueba de escritorio con el angulo igual a 90 grados, podras darte cuenta de que a
diferencia de la primera versién del algoritmo donde se evallan todas las condiciones, aqui sélo se
evallan las tres primeras, en los dos primeros Si es falsa y por lo tanto se ejecutan las instrucciones
del Sino correspondiente, pero en el tercer Si anidado la condicion es verdadera y se imprime el tipo
de angulo, posteriormente se acaba el anidamiento.

El programa en C es el siguiente:
main ()

{

/*Declaracidén de variables */ intangulo;
/*Mensaje de bienvenida*/
printf ("\nEste programa determina de que tipo es el angulo

dado.") ;

/*Instrucciones */

printf ("\n\nIngrese la medida del angulo (grados): ");
scanf ("%d", &angulo) ;

if (angulo<=0 || angulo>=360)

printf ("\n No tiene clasificacidén");

else if (angulo<90)
printf ("\n El angulo es agudo");

else if (angulo==90)
printf ("\n El angulo es recto");

else if (angulo<180)
printf ("\nElanguloesobtuso");

else if (angulo ==180)
printf ("\n El angulo es llano");

else
printf ("\nElangulo es concavo");

printf
("\n\n
\t");
system
("paus
e");

Universidad Abierta y a Distancia de México 30

U 3 Programacion
Estructuras de control

Programa 3.7: tipoAngulo2.c

La ejecucion con el angulo igual a 90 grados se muestra en la siguiente figura.

¥ ° C:\Users\Lilian\Documents\Respaldo2oct\IP\IP92\IP101\tipoAngulo2.exe =
— — -

Este programa determina de que tipo es el angulo dado. -
Ingrese la medida del angulo {(grados): 9@
El angulo es recto

Presione una tecla para continuar . . .

Figura 3.7: Ejecucion del programa tipoAngulo2.c

Con este ejemplo se da por terminada esta unidad, ahora ya conoces todas las estructuras y has visto
cémo funcionan y qué tipo de situaciones se puede modelar con ellas. Aunque cabe destacar que para
solucionar cualquier problema basta con que sepas utilizar el ciclo while y la estructura selectiva i -
else, puesya se menciond que todos los ciclos son equivalentes y con la estructura if-else,
puedes modelar un switch-case anidando if’s.

3.4. Arreglos

El uso de arreglos facilita y hace més eficiente la declaracién y manipulacion de una coleccién de
datos de un mismo tipo que estan relacionados entre si, como es el caso de las calificaciones en el
Problemal, ya que todas las calificaciones se pueden considerar como valores enteros.

Problema 3.7: Se requiere un programa para llevar el registro de calificaciones de un grupo de diez
estudiantes y generar reportes que incluyan datos como el promedio del grupo, la calificacibn maxima,
el numero de estudiantes que tienen una calificacion superior al promedio del grupo, entre otros.

En este caso, a diferencia de los ejemplos anteriores, es claro que las calificaciones de cada
estudiante se puede tratar como un dato simple e independiente de los otros, sin embargo las
operaciones que se desean realizar seran las mismas para todo el conjunto de calificaciones, de tal
forma que habria que escribir una serie de instrucciones secuenciales para ingresar cada dato y
procesarlo. Por ejemplo, para ingresar los datos se requiere leer una por una cada calificacion, para

Universidad Abierta y a Distancia de México 31

U 3 Programacion
Estructuras de control

obtener el promedio se tendria que hacer la suma de todas y después dividirlas entre 10, hasta aqui
no se ha complicado mucho, pero imagina todas las comparaciones que debes hacer para identificar
cudl es la calificacion mayor. Es claro que este método resulta de lo més ineficiente, y por supuesto si
consideramos la posibilidad de modificar el programa para que sea capaz de procesar 60 0 mas
calificaciones, el programa ademas de extenderse, implica reestructurarlo en su totalidad y que éste
sea mas complejo que la versién anterior. En cambio si consideramos a todos las calificaciones como
un dato estructurado podemos hacer uso de una estructura de dato que nos facilite su manipulacién.

Existen diferentes tipos de estructuras de datos, cada una caracterizada por la forma de acceso a sus
elementos, y el tipo que estos pueden tener, asi tenemos arreglos, listas, colas, tablas, pilas, entre
otros. No obstante, para este tema nos centraremos solo en las estructuras de datos que implementa
el lenguaje C de forma directa: los arreglos.

La solucién del problema representada en pseudocodigo se muestra en el siguiente algoritmo.

inicio
suma «— 0
Desde i < 0 mientras i<10, i« i+1
Imprimir “Ingresa la calificacion” i
Leer calif[i]
suma« suma-+califfi]
Fin Desde
prom « prom/10
Imprimir “Las calificaciones ingresadas fueron:”
Desde i < 0 mientras i<10, i < i+1
Imprimir “Calificacion” i “.” califfi]
Fin Desde
Imprimir “Calificacion promedio = ” prom
Fin
Algoritmo 3.8. Promedio de calificaciones

Universidad Abierta y a Distancia de México 32

U 3 Programacion
Estructuras de control

La codificacion del algoritmo anterior es la siguiente:

/*Directivas de preprocesador*/
#include <stdio.h>
#include <stdlib.h>
/* Definimos como constante simbdlica el tamafio del arreglo*/
#define TAM 10
/* Definicidén de funcidédn principal */
main ()
{
/*Declaracidén del arreglo calificaciones*/
int calif [TAM];
double prom
- 0;
int 1i;
printf (WFAx V),
printf (“* El siguiente programa calcula el promedio de
*\n") ;
printf (“* un grupo de diez estudiantes”);
printf (W<**7);
/*Lectura y suma de las calificaciones*/
for (1i=0; i < TAM; 1i++)
{
printf ("Proporciona la calificacién %d: ",i+1);
scanf (“%d”, &califl[il]);
prom = prom + calif[i];
}
/*Célculo e impresidédn del promedio*/
prom = prom/TAM;
/*Impresidén de las calificaciones*/
printf ("\nLas calificaciones ingresadas fueron:
\n"); for(i=0; i < TAM; 1i++)
printf ("\nCalificacion %d: %d",i+1, calif[i]):;
printf ("\n\n\tPromedio = %.2f\n\n", prom);
system ("pause") ;

Programa 3.8: promCalificaciones.c

Universidad Abierta y a Distancia de México 33

U 3 Programacion
Estructuras de control

En la siguiente figura se muestra una ejecucién del programa.

C:\Users\Dian;\Documents\CursosSEP\Programacion\ejemploAneglos.exe" - @M

”i{

-
‘¢ E1 siguiente programa calcula el promedio de —
P un grupo de diez estudiantes 1=
Proporciona la calificacidén 1: 9 t_
Proporciona la calificacidén 2: 3
Proporciona la calificacidén 3: 2
Proporc1ona la calificacidn 4: 5

Proporciona la calificacién 5: 6 n

Proporciona la calificacién 6: 8
Proporciona la calificacién ?7: 8
Proporciona la calificacidén 8: 9
Proporciona la calificacién 9: 1
Proporciona la calificacidén 10: 9

as calificaciones ingresadas fueron:

alificacion
alificacion
alificacion
alificacion
alificacion
alificacion
alificacion
alificacion
alificacion
alificacion

Promedio = 6.98

s o8 50 50 s 0n 40w
HOWONNINWN
e

HAOAINUHAWN M

Presione una tecla para continuar . . .

Figura 3.8: Ejecucion del programa promCalificaciones.c

Se sugiere consultes el video que contiene las bases de los arreglos como los que
podrias aplicar a lo largo de la unidad:
https://www.youtube.com/watch?v=gCBpGyKyaGU.

3.4.1.Definicién y tipos de arreglos

“Un arreglo se define como una coleccion finita, homogénea y ordenada de elementos. Finita ya que
para todo arreglo debe especificarse el nimero maximo de elementos que podra contener; la
homogeneidad se refiere a que todos los elementos deben ser del mismo tipo, y ordenada porque es
posible determinar cual es el primer elemento, cual el segundo, y asi hasta el enésimo elemento”
(Cairo Osvaldo, Guardati Buemo Silvia, 1993).

La posicién que ocupa un elemento dentro de un arreglo se le denomina formalmente indice y siempre
es un numero entero. El tamafio o longitud de un arreglo se define como el nUmero de elementos que

Universidad Abierta y a Distancia de México 34

https://www.youtube.com/watch?v=gCBpGyKyaGU

U 3 Programacion
Estructuras de control

lo constituyen. La dimension de un arreglo esta relacionada con el nimero de indices necesarios para
especificar un elemento en particular.

Podemos clasificar a los arreglos de acuerdo con su dimension como unidimensionales o
multidimensionales.

Los arreglos unidimensionales(también llamados lineales) reciben su nombre debido a que cualquier
elemento es referenciado por un unico indice, por ejemplo retomando el caso de las calificaciones del
problema 3.7, éstas pueden ser almacenadas en un arreglo unidimensional como el que se muestra en
la Figura 3.9, en donde el nombre del arreglo es lista y los nombres de las variables donde se
almacenan las calificaciones son: lista[0], lista[1], lista[2], lista[3], lista[4] ..., lista[9]. En este caso el
nombre en comun es lista y lo Unico que cambia para cada elemento es el nUmero que le corresponde
a cada variable segun la posicién que ocupa en la lista. Observa que un solo indice es suficiente para
diferenciar a un elemento de otro.

Nombre del arreglo

af

listal[
listal
listal
listal
listal[
listal
lista[
listal
listal
listal[

o

—
o

W - &b WD O
0| |09 Ofwn|o

Posici6n que ocupa un elemento dentro de arreglo

Figura 3.9. Representacion gréfica de un arreglo unidimensional

Por otro lado los arreglos multidimensionales son aquellos para los cuales un solo indice no es
suficiente para poder referenciar a un elemento individual, los arreglos bidimensionales son el caso
méas comunmente utilizado de arreglos multidimensionales y por tanto los Unicos que presentaremos.

“Un arreglo bidimensional es un conjunto de datos homogéneos, finito y ordenado, donde se hace
referencia a cada elemento por medio de dos indices. El primero de los cuales generalmente se utiliza
para indicar renglén y el segundo para indicar columna” (Cairo Osvaldo, Guardati Buemo Silvia, 1993)

Un arreglo bidimensional también puede verse como una tabla de valores, o bien como un arreglo de
arreglos, de ahi la necesidad de dos indices, en la Figura 3.10 se muestra un ejemplo gréfico de un

Universidad Abierta y a Distancia de México 35

U 3 Programacion
Estructuras de control

arreglo bidimensional, en la cual del lado derecho podemos ver al arreglo como una tabla y del lado
izquierdo representado como un arreglo de arreglos, Observa que cada renglon de la tabla es cada
uno de los elementos del arreglo de arreglos. Es claro que con un solo indice no podriamos identificar
a un unico elemento ya que solo podriamos ubicar toda una columna o todo un renglén, en cambio la
combinacion de renglon-columna si nos identifica a un elemento en particular.

Nombre del arreglo
J
{/ (0] 9
tabla [0] (1] 10
(2] 8 indice para la columna
(0] 3
wabla | [1] (1] 9 Wl jo [1) [2)
7] = I[9]10]8
5 i mls|loleé
(0] RI[7 19 |4
tabla | [2] (1] 9 B8] 916
(2] 4 @1 7194
[0] 8 5\
tabla [3] (1] 9 indice para el renglén
2] 6
(0] 7
[+4]
tabla [‘l,] 2
/’ (2] 4
Indice para el renglén /
indice para la columna

Figura 3.10 Representacion gréafica de un arreglo bidimensional

3.4.2.Declaracion e inicializacion

En lenguaje C los indices de los arreglos siempre empiezan en cero, es decir, al primer elemento del
arreglo le corresponde la posicion 0, al segundo la posicién 1, al tercero la posicion 2 y asi
sucesivamente hasta llegar al elemento TAM-1, donde TAM corresponde al tamafio del arreglo.

La declaracion de un arreglo consiste en reservar espacio de memoria suficiente para el conjunto de
datos homogéneos. La declaracion de una variable de tipo arreglo sigue las mismas reglas que para
las variables simples; con la diferencia de que ahora sera necesario especificar el tamafio del arreglo,
esto se hace escribiendo el tamafio del arreglo encerrado entre corchetes [TAM], después del
identificador.

Universidad Abierta y a Distancia de México 36

U 3 Programacion
Estructuras de control

La sintaxis para la declaracién de un arreglo unidimensional en lenguaje C es la siguiente:
<tipo><nombre>[<tamafio>];

Y para un arreglo bidimensional es:
<tipo><nombre>[<tamafiol>] [<tamafio2>];

El tipo de dato para los arreglos puede ser cualquier tipo basico, es decir entero, flotante o caracter (en
C int, float, double 0 char). De todos ellos los arreglos de tipo caracter (char) tienen un
tratamiento especial, ya que un arreglo de este tipo se considerara una cadena. Debido a la
importancia que tienen las cadenas en la programacion mas adelante los trataremos de manera
particular.

Al igual que las variables simples, un arreglo puede inicializarse al momento de ser declarado, para
ello se utiliza el operador asignacion “=”, pero como un arreglo almacena a un conjunto de datos, es
necesario inicializarlo con un conjunto de valores, los cuales se indican mediante llaves, separando por
comas cada elemento del conjunto de valores iniciales, la sintaxis se muestra a continuacion:

<tipo><nombre>[<tamafio>]={<valoro>,<valori>,..,<valorTtam-1>};

La asignacién de cada valor inicial se hace consecutivamente desde el elemento 0, por tanto no es
posible asignar valores a elementos salteados.

Veamos como ejemplo la declaracién del arreglo unidimensional lista (Figura 3.9) planteado para las
calificaciones del problema 3.7. Inicializando sus elementos en la declaracion queda como:
int lista[10] = {9,10,8,5,9,6,7,9,4,8};

En el caso de los arreglos bidimensionales la sintaxis es la siguiente:
<tipo><nombre>[<tamafiol>] [<tamafio2>]={ {<valoroo>,<valoropi>,..,<valoro(rtam21)>},
{<valroio>,<valorii>,..,<valori(ram21-1)>},..,

{<valor (rami-1)0>,<valor (ramz-1)1>,..,<elem(rami-1) (Tamz-1)>}

}i

Veamos ahora como queda la declaracion del arreglo bidimensional tabla mostrado en la Figura 3.10,
inicializando sus valores:
int tabla[5][3]1={{9,10,8},{5,9,6},{7,9,4},{8,9,6},{7,9,4}};

Aunqgue también es posible declararlo de la siguiente forma:
int tabla[5][3]={9,10,8,5,9,6,7,9,4,8,9,6,7,9,4};

Esta es debido a que como ya se dijo antes un arreglo bidimensional se pude ver como un arreglo de
arreglos.

Universidad Abierta y a Distancia de México 37

U 3 Programacion
Estructuras de control

Por otro lado, en lenguaje C siempre es necesario especificar el tamafio del arreglo al momento de
declararlo, sin embargo esto se puede hacer de forma explicita o implicita.

¢ Explicitamente es cuando se especifica el tamafio dentro de los corchetes que siguen al
identificador, como en los ejemplos anteriores.

¢ De forma implicita se hace cuando el arreglo es inicializado con un conjunto de valores, y
se omite el tamafo dentro de los corchetes, entonces el compilador asume el tamario del
arreglo igual al tamafio del conjunto de valores iniciales, de tal forma que la declaracién del
arreglo lista puede quedar como:

int listal] = {9,10,8,5,9,6,7,9,4,8};

Observa que en este caso no se escribe el tamafio dentro de los corchetes, pero como hay 10
elementos en el conjunto de valores iniciales, el compilador de C asume un tamaifio 10 para el arreglo.

Para los arreglos bidimensionales, sélo es posible especificar una dimensién de forma implicita, el
tamafo de renglones siempre debe hacerse de forma explicita.

La asignacion de un conjunto de valores al arreglo, en una sola operacién de asignacién, Gnicamente
es posible en su declaracion, si se intenta realizar en otro momento el compilador marcara un error, ya
gue en cualquier otra parte del programa solo se podran asignar valores simples a cada uno de los
elementos por separado.

Es importante sefialar que cuando se desea inicializar el arreglo al declararlo, es posible inicializar sélo
algunos de sus elementos, pero en este caso se tendria que especificar explicitamente el tamafio,
ademas se debe recordar que la asignacion de valores iniciales es consecutiva desde el elemento O.
Los elementos para los cuales no se indique un valor inicial, automéaticamente se inicializan en cero.
Por ejemplo la declaracién

int lista[l10] = {5};

Reservard espacio en memoria para los 10 elementos del arreglo de los cuales al primer elemento se
le asignara un 5y al resto se les asignara un cero.

En el caso de los arreglos bidimensionales es posible declara sélo algunos elementos por renglon,
siempre y cuando los elementos sean consecutivos, como en el caso de los unidimensionales. Por

ejemplo la siguiente declaracién para el arreglo tabla:
int tabla[5]1[31={{9,10},{5},{7,9,4},{8,9,1}};

Daria como resultado la siguiente asignacion de valores iniciales

Universidad Abierta y a Distancia de México 38

U 3 Programacion
Estructuras de control

(0] (1] [2]
(0]l S 10 0
[1]] 5 0 0
(21 7 9 4
[3]1|] 8 9 0
(411 O 0 0

En el caso de que la declaracién fuera:
int tablal[5][3]1={9,10,5,7,9,4,8,9,};

Entonces la asignacion de valores iniciales se haria de la siguiente forma

(0] (1] [2]
(0]l S 10 5
(11 7 9 4
[2]] 8 9 0
[3]] © 0 0
[4]] © 0 0

3.4.3.Acceso a los elementos de un arreglo
Para referirse a un elemento del arreglo es necesario indicar el nombre del arreglo seguido del indice o

indices correspondientes al elemento que deseamos acceder. Para ello se debe seguir la siguiente
sintaxis.

Elementos de un arreglo unidimensional:
<nombre del arreglo>[<indice>];

Elementos de un arreglo bidimensional:
<nombre del arreglo>[<indice de rengldn>][<indice de columna>];

Observa que para cada indice se utilizan corchetes separados.

Cada elemento del arreglo se puede tratar igual que a cualquier otra variable, es decir, podemos
asignarle un valor, incluir en una expresion algebraica o l6gica, imprimir en pantalla su valor, asignarle
desde el teclado un valor, etc.

Universidad Abierta y a Distancia de México 39

Programacion

Estructuras de control

Instruccion Descripcién

tabla[0] [2] = 8; Asignar el valor de 8 al tercer elemento
del primer renglon de arreglo tabla

Imprimir en pantalla el quinto elemento del

printf (“%d”,listal4]);)
arreglo lista

Lee un entero desde teclado y asignarlo en

scanf (“%d”, &tabla[0][0]);) L,
la primera posicion del arreglo tabla.

Incrementar en uno el valor del segundo

listall]++; .
elemento del arreglo lista

Actividades

La elaboracidn de las actividades estara guiada por tu docente en linea, mismo que te
indicara, a través de la Planeacién didactica del docente en linea, la dindmica que tl y
tus compafieros (as) llevaran a cabo, asi como los envios que tendran que realizar.

Para el envio de tus trabajos usaras la siguiente nomenclatura: BPRG_U3_Al1_XXYZ,
donde BPRG corresponde a las siglas de la asignatura, U3 es la unidad de
conocimiento, Al es el nUmero de actividad, el cual debes sustituir considerando la
actividad que se realices, XX son las primeras letras de tu nombre, Y la primera letra de
tu apellido paterno y Z la primera letra de tu apellido materno.

Autorreflexiones

Para la parte de autorreflexiones debes responder las Preguntas de Autorreflexion
indicadas por tu docente en linea y enviar tu archivo. Cabe recordar que esta actividad
tiene una ponderacion del 10% de tu evaluacion.

Para el envio de tu autorreflexion utiliza la siguiente nomenclatura:

BPRG U3 ATR XXYZ, donde BPRG corresponde a las siglas de la asignatura, U3 es
la unidad de conocimiento, XX son las primeras letras de tu nombre, y la primera letra
de tu apellido paterno y Z la primera letra de tu apellido materno

Universidad Abierta y a Distancia de México

40

U 3 Programacion
Estructuras de control

Cierre de launidad

En esta Unidad hemos aprendido a utilizar las estructuras de control y los arreglos elementos
importantes en la base del conocimiento de la programacién es importante seguir practicando para
mantener un nivel de conocimiento base, por otro lado, pueden ir viendo temas como programacion
orientada a objetos como complemento de la programacion.

Para saber mas

o Puedes encontrar mas informacion acerca de diagramas de flujos, pseudocédigo y algunos
programas para desarrollar en C en los siguientes vinculos:
http://pseint.sourceforge.net/index.php?page=documentacion.php
http://www.c.conclase.net/curso/index.php
http://zinjai.sourceforge.net/index.php?page=documentacion.php

Universidad Abierta y a Distancia de México 41

http://pseint.sourceforge.net/index.php?page=documentacion.php
http://www.c.conclase.net/curso/index.php
http://zinjai.sourceforge.net/index.php?page=documentacion.php

U3

Programacion
Estructuras de control

Fuentes de consulta

Fuentes basicas

Bohm, C., & Jacopini, G. (1966). Flow diagrams, Turing machines, and languages only with two
formation rules". Communications of the ACM, 9 (5), 366-371.

Caird, O. (2005). Metodologia de la programacion: Algoritmos, diagramas de flujo y programas.
México, D.F.: Alfaomega.

Guerrero, F. (s.f.). mailxmail.com. Recuperado el 15 de 8 de 2010, de
https://web.archive.org/web/20221129015722/http://www.mailxmail.com/curso-introduccion-
lenguaje-c

Hernandez, Maria Lourdes (2010), Disefio Estructurado de Algoritmos, Diagramas de Flujos y
Pseudocddigos, Documento recopilado de la Universidad de Teuxtepe.

Joyanes, L., & Zohanero, I. (2005). Programacion en C. Metodologia, algoritmos y estructuras
de datos. Espafia: Mc Graw Hill.

Kernighan, B., & Ritchie, D. (1991). El lenguaje de programciéon C. México: Prentice-Hall
Hispanoamericana.

Lépez, L. (2005). Programacion estructurada en lenguaje C. México: Alfaomega.

Reyes, A., & Cruz, D. (2009). Notas de clase: Introduccién a la programacion. México, D.F.:
UACM.

Villela, H. T. (20 de agosto de 2010). Manual de C. Consultado el 25 de marzo de 2020 en:
http://diarium.usal.es/mliperez/files/2012/06/lenguajec-unix-gcc.pdf

Viso, E., & Pelaez, C. (2007). Introduccion a las ciencias de la computacion con Java. México,
D.F.: La prensa de ciencias, Facultad de Ciencias, UNAM.

Universidad Abierta y a Distancia de México 42

https://web.archive.org/web/20221129015722/http:/www.mailxmail.com/curso-introduccion-lenguaje-c
https://web.archive.org/web/20221129015722/http:/www.mailxmail.com/curso-introduccion-lenguaje-c
http://diarium.usal.es/mlperez/files/2012/06/lenguajec-unix-gcc.pdf

